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In this paper, we develop a nonperturbation theory for describing decoherence dynamics of electron charges
in a double quantum dot gated by electrodes. We extend the Feynman-Vernon influence functional theory to
fermionic environments and derive an exact master equation for the reduced density matrix of electrons in the
double dot for a general spectral density at arbitrary temperature and bias. We then investigate the decoherence
dynamics of the double-dot charge qubit with backreaction of the reservoirs being fully taken into account.
Time-dependent fluctuations and leakage effects induced from the dot-reservoir coupling are explicitly ex-
plored. The charge qubit dynamics from the Markovian to non-Markovian regime is systematically studied
under various manipulating conditions. The decay behavior of charge qubit coherence and the corresponding
relaxation time T1 and dephasing time T2 are analyzed in detail.
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I. INTRODUCTION

Double quantum dot systems have been attracting much
attention because of their intriguing properties and their po-
tential applications in nanotechnology and quantum informa-
tion processing.1,2 The basic structure of a double quantum
dot system can be viewed as electrons confined in an elec-
trostatic potential of double wells created by the fabricated
gates, source, and drain electrodes in the heterostructure of a
semiconductor. The heterostructure of GaAs/AlGaAs is a
typical example of the realization of gate-defined double dot.
The tunability of various couplings and energy levels in the
dots makes it a promising quantum device �see, for example,
Refs. 3–7�. Moreover maintaining the electron coherence is
important in making it part of a quantum information proces-
sor. However, fluctuations and dissipations brought up by
quantum operations of manipulations and measurements as
well as various features of the host material enrich the phys-
ics of double-dot systems more than perfect coherent evolu-
tion. Thus a lot of attention has been paid to investigate how
various noises and interactions with the surroundings attenu-
ate the coherent evolution of electrons in the double dot.

In this paper, we will concentrate on a nonperturbative
dynamical theory for charge qubit manipulation with a
double-dot system gated by electrodes. In the quantum com-
puting scheme in terms of double dots where the electron
charge degree of freedom is exploited, the effects in deviat-
ing the coherency of charge dynamics are summarized in the
fluctuations of the interdot coupling and energy splitting be-
tween the two local charge states as well as the dissipation-
induced damping effects. The amplitudes of these fluctua-
tions can be estimated from measurements of the noise
spectrum of electron currents and the minimum linewidth of
elastic current peak.1 Parallel theoretical works have been
developed with different approaches in the literature for the
purposes of both simulating the experimental results and un-
derstanding the physical mechanisms living in the double
dot. In the present work, we shall extend the Feynman-
Vernon influence functional theory8 to fermionic environ-
ments and derive an exact master equation describing the

coherent and decoherent dynamics of the electron charges in
the double dot with the backreaction effects of the reservoirs
being fully taken into account.

Stochastic noise processes resulted in a time-dependent
Hamiltonian for the double dot have been widely analyzed in
simulating the charge dynamics under noise influences. The
Bloch-type rate equations for describing the double-dot
transport properties was investigated by Gurvitz and Prager9

using the many-body Schrödinger equation approach which
is further applied to study decoherence of double-dot charge
qubit in Ref. 10. The phonon-assisted processes was investi-
gated within the Born-Markov regime by Brandes et al.11

using Born-Markov typed master equation. A general expres-
sion of the qubit density matrix in case of pure dephasing12

was used by Fedichkin and Fedorov13 to study the error rate
of the charge qubit. Stavrou and Hu14 considered in detail the
wave functions of the double-dot charge qubit for decoher-
ence analysis. Karrasch et al.15 came with the functional
renormalization-group approach in dealing with the transport
aspects of the multiple coupled dots. The non-Markovian
dynamics was also recently studied by a suitable spin-boson
model considering the acoustic phonons by Thorwart et
al.16,17 using numerical quasiadiabatic propagator path-
integral scheme. Without Born-Markov approximation, Wu
et al.18,19 devised an analytical expression for the dynamical
tunneling current using a perturbation treatment based on a
unitary transformation. Effects from the Coulomb interaction
between the dots and the gate electrodes with the formulation
of kinetic equations was presented by Woodford et al.20 The
diversity in the methodologies and issues concerned in the
literature shows the physical richness of this novel system.

As we can see there are many factors competing to play
the consequent physics in the double quantum dot system. To
single out one factor from the others on the resulted dynami-
cal properties of this charge device, we shall first concentrate
in this paper on the effects induced by dot-reservoir cou-
pling, where the double dot is designed in the strong Cou-
lomb blockade regime such that each dot only contains one
energy level. The reservoirs consist of the source and drain
electrodes which are controllable through the bias voltage. A
schematic plot of the system is shown in Fig. 1. Thus the

PHYSICAL REVIEW B 78, 235311 �2008�

1098-0121/2008/78�23�/235311�27� ©2008 The American Physical Society235311-1

http://dx.doi.org/10.1103/PhysRevB.78.235311


total Hamiltonian of the system we concern in this work is
given by

H = E1a1
†a1 + E2a2

†a2 + Tc�a2
†a1 + a1

†a2�

+ �
k

��LkaLk
† aLk + �RkaRk

† aRk�

+ �
k

�t1Lka1
†aLk + t2RkaRk

† a2 + H.c.� , �1�

which contains the Hamiltonians of the double-dot, the
source, and drain electrodes plus the interaction �electron
tunneling processes� between them. The notations follow the
convention and will be specified in detail later.

Our treatment is based on the exact master equation we
derived for a general spectral density of the electron reser-
voirs at arbitrary temperature and bias:

�̇ = − i�H��t�,�� + �0�t�� + �
ij

�ij�t��2aj�ai
† − ai

†aj� − �ai
†aj�

+ �
ij

�ij
��t��aj�ai

† − ai
†�aj − ai

†aj� − �ai
†aj� , �2�

where � is the reduced density matrix of the double dot ob-
tained from the full density matrix of the double dot plus the
reservoirs by tracing out the environmental degrees of free-
dom and

H��t� = E1��t�a1
†a1 + E2��t�a2

†a2 + Tc��t�a1
†a2 + Tc�

��t�a2
†a1

�3�

is the corresponding effective Hamiltonian. All the time-
dependent coefficients in the above equations will be derived
explicitly and nonperturbatively in Sec. III. The time-
dependent fluctuations of the energy levels Ei��t� and the in-
terdot transition amplitude Tc��t� are the renormalization ef-
fects risen from the electron tunneling processes between the
double dot and the reservoirs. Other nonunitary terms de-
scribe the dissipative and noise processes with time-
dependent coefficients, �0�t�, ��t�, and ���t�, depicting the
full non-Markovian decoherence dynamics. Equation �2� is
obtained without considering the interdot Coulomb repul-
sion. But as we will show explicitly in Sec. III it is easy to
extend to the strong interdot Coulomb repulsion regime
where the strong interdot Coulomb repulsion simply leads
one to exclude the states corresponding to a simultaneous
occupation of two dots from Eq. �2�. Then the exact master

equation allows us to exploit the intrinsic quantum decoher-
ence effects in the electron charge coherency brought up by
the tunneling processes between the dots and the reservoirs
through the bias controls.

Master equation �2� is derived by extending the Feynman-
Vernon influence functional theory8 to fermion coherent-state
path integrals.21 Historically, since it was first developed by
Feynman and Vernon8 in 1963 for quantum Brownian mo-
tion �QBM� modeled as a central harmonic oscillator linearly
coupled to a set of harmonic oscillators simulating the ther-
mal bath, the influence functional theory has been widely
used to study dissipation dynamics in quantum tunneling
problems22 and decoherence problems in quantum measure-
ment theory.23,24 In these early applications, the master equa-
tion was derived for some particular class of ohmic
environment.25–27 The exact master equation for the QBM
with a general spectral density at arbitrary temperature was
obtained by Hu et al.28 in 1992. Applications of the QBM
exact master equation cover various topics, such as quantum
decoherence, quantum-to-classical transition, and quantum
measurement theory.24 Very recently, such an exact master
equation is further extended to the system of two entangled
optical fields and two entangled harmonic oscillators for the
study of non-Markovian entanglement dynamics in quantum
information processing.29,30 Nevertheless, using the influence
functional theory to derive the exact master equation has
been largely focused on the bosonic type of environments up
to date.

On the other hand, the development of quantum transport
theory in nanosystems has continuously attracted attention in
the last two decades because of the great achievements in
nanotechnology, where the reservoir is, in many cases, a fer-
mion system. The traditional approach to study the quantum
transport in nanosystems is the Schwinger-Keldysh nonequi-
librium Green’s-function formalism31,32 which has been ex-
tensively used in successfully describing various quantum
transport phenomena, such as Kondo effect, Fano resonance,
and Coulomb blockade effects in quantum dots.33–36 Master
equations for quantum transport through quantum dots have
also been derived but mostly in the perturbation theory up to
the second order.37–41 The exact master equation can be, in
principle, obtained through the real-time diagrammatic ex-
pansion approach developed by Schon and co-workers,35,42

as shown recently by Lee and Zhang.43 Another interesting
formalism is the recently published hierarchical expansion of
the equations of motion for the reduced density matrix by
Yan et al.44 Nevertheless, in contrast to the bosonic
environments,28 an explicit formula of the exact master equa-
tion for fermionic environments with a general spectral den-
sity at arbitrary temperature and bias has not been carried out
except for Eq. �2� in this work.

Unlike the quantum transport in nanosystems where
people pay more attention on the tunneling current spectrum
and its statistics, one cares in quantum information process-
ing how the qubit coherency can be maintained for fast quan-
tum operations where a strong coupling is required. Then a
nonperturbative �with respect to the coupling between the
system and its environment� master equation is more desir-
able for the precision manipulations of qubit states. Equation
�2� obtained in this paper has fully taken into account the
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FIG. 1. A schematic plot for a lateral tunnel-coupled double
quantum dot system.
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backreaction of the electron reservoirs at arbitrary tempera-
ture and bias. This master equation is also valid for a general
spectral density. It is a fully nonperturbative manner that
goes far beyond the Born-Markov approximation often used
in the literature. It enables us to explore the dynamics of the
electron charge coherence in the double dot, from Markovian
to non-Markovian regime under various manipulating condi-
tions. Many other approximated master equations that have
been developed in the literature can be obtained at well-
defined limits of the present theory.

The rest of the paper is organized as follows. In Sec. II,
we will use fermion coherent-state path-integral approach to
solve exactly the electron dynamics in an isolated double
quantum dots, as an illustration. We then extend the
Feynman-Vernon influence functional theory originally built
on the coordinate representation in quantum mechanics to
fermion coherent-state representation. The exact master
equation for the reduced density matrix of the double-dot
system coupling to electron reservoirs is derived in Sec. III,
where we also reproduce many other approximate master
equations at well-defined limits of the present formulas. In
Sec. IV, we investigate the non-Markovian decoherence dy-
namics of this device including the tunneling induced fluc-
tuations in the energy splitting and interdot coupling of the
double dot as well as the noise and dissipation effects on the
charge mode populations and interferences. The leakage ef-
fect is also discussed together there. The decay behaviors of
charge qubit coherence and the corresponding relaxation
time T1 and dephasing time T2 are analyzed in detail. Exten-
sion of the present theory to other quantum dot systems is
outlined in Sec. V and the conclusive remarks are given in
Sec. VI. Appendixes A and B are presented for some detailed
derivations.

II. FERMION COHERENT-STATE PATH-INTEGRAL
APPROACH TO AN ISOLATED DOUBLE DOT

To illustrate the fermion coherent-state path-integral ap-
proach to the electron dynamics in a double quantum dot, we
shall consider in this section a simple solvable system, a
single electron in an isolated double dot, before we go to
explore the realistic system in Sec. III. We also assume that
each of the dots contains only one energy level, E1 and E2,
respectively. The Hamiltonian of this isolated double quan-
tum dot is

H = E1a1
†a1 + E2a2

†a2 + Tc�a2
†a1 + a1

†a2� . �4�

The notations follow the following convention: a1,2
† are the

creation operators for electrons in the double dot and Tc is
the electron transition amplitude between the dots. In terms
of the density operator, the time evolution of the system is
described by

��t� = U�t − t0���t0�U†�t − t0� , �5�

where the density matrix ��t� is the state of the system at a
later time t, ��t0� is the state at the initial time t0, U�t− t0�
=exp�− i

�H�t− t0�� is the evolution operator of the system,
and we let �=1 hereafter.

Using the fermion coherent-state representation,45 the
density matrix at time t is expressed as ��	��t�	�

=���� ,� , t�, where � and � are the two Grassmann variables
characterizing the two-mode fermion coherent states,

	�
 = �
i=1,2

	�i
, 	�i
 = exp�− �iai
†�	0
 . �6�

The fermion coherent state defined above is an eigenstate of
the fermion annihilation operator, ai	�i
=�i	�i
. As these co-
herent states are overcomplete, they obey the resolution of
identity, �d����	�
��	=1, where the integration measure is

defined by d����=�ie
−�i

�
�id�i

�d�i. Note that the fermionic co-
herent states we used here are not normalized, and the nor-
malization factors are moved into the above integration mea-
sure. Moreover, these coherent states are also nonorthogonal.
The overlap of two fermionic coherent states is �� 	��

=exp��†��� with a matrix notation �†= ��1

��2
��.

The use of the coherent-state representation makes the
path-integral formulation for a fermion system generally pos-
sible. In the fermionic coherent-state representation, the time
evolution of the density matrix becomes

��� f
�,� f,t� = d���0�d���0����0

�,�0,t0�

	 J�� f
�,� f,t	�0,�0

�,t0� , �7�

where J�� f
� ,� f , t 	�0 ,�0

� , t0�= �� f	U�t− t0�	�0
��0	U†�t− t0�	� f

is the propagating function in which the forward and back-
ward transition amplitudes �� f	U�t− t0�	�0
 and ��0	U†�t
− t0�	� f
 can be solved exactly using path integral for Hamil-
tonian �4�.

Explicitly, the fermion coherent-state path integral for the
forward transition amplitude is given by

�� f	U�t − t0�	�0
 = D��,���exp�iSc���,��� , �8�

where the action is

Sc���,�� = �
i=1,2

�−
i

2
��if

� �i�t� + �i
��t0��i0�

+ 
t0

t

d
� i

2
��i

��̇i − �̇i
��i� − �Ei�i

��i + Tc�i
��i���� .

�9�

In the above equation, the path integral D�� ,��� integrates
over all paths �i�
� and �i

��
� bounded by �i�t0�=�i0 and
�i

��t�=�if
� , with i� i�. Since the action in Eq. �8� has a qua-

dratic form, the path integral can be exactly carried out with
the stationary path method.45,46 The result is

�� f	U�t − t0�	�0
 = exp�
i
� �if

� �i�t� + �i
��t0��i0

2
� , �10�

where �i
��t0� and �i�t� are determined by the solution of the

equations of motion,

�̇i�
� + i�Ei�i�
� + Tc�i��
�� = 0, �11a�
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�̇i
��
� − i�Ei�i

��
� + Tc�i�
� �
�� = 0, �11b�

with the boundary conditions �i�t0�=�i0 and �i
��t�=�if

� , where
i� i�. The backward transition amplitude ��0	U†�t− t0�	� f

can be found by the same procedure. From Eq. �11� we can
introduce a 2	2 matrix u0�t� such that ��t�=u0�t��0 and
�†�t0�=� f

†u0�t�, where u0�t� satisfies the equation of motion,

u̇0�t� + i�E1 Tc

Tc E2
�u0�t� = 0, �12�

with the boundary condition �u0�ij�t0�=�ij. The solution of
Eq. �12� is

u0�t� = exp�− i�E1 Tc

Tc E2
��t − t0��

= e−i��t��cos �t�I − in · � sin �t�� , �13�

with ��t�=E�t− t0� and �t�=�0�t− t0� /2. Here we have also
defined E� 1

2 �E1+E2� and the Rabi frequency �0=��2+�2,
where ��E1−E2 is the energy-level splitting in the double
dot and �=2Tc the interdot tunnel coupling. � is the Pauli
matrix, I is a 2	2 identity matrix, and the unit vector n
��� ,0 ,�� /�0. Then the propagating function becomes

J�� f
�,� f,t	�0,�0

�,t0� = exp�� f
†u0�t��0 + �0

†u0
†�t�� f� . �14�

If we use further the D algebra of fermion creation and
annihilation operators in the fermion coherent-state represen-
tation 	�
,21

�i	�
 = ai	�
, −
�

��i
	�
 = ai

†	�
 , �15a�

��	�i
� = ��	ai

†, ��	
�

��i
� = ��	ai, �15b�

it is easy to derive the equation of motion for the density
operator ��t�:

�̇�t� = �
ij

��u̇0�t�u0�t�−1�ijai
†aj��t� + �u̇0�t�u0�t�−1�ij

� ��t�aj
†ai� .

�16�

One can see from Eq. �12� that u̇0�t�u0�t�−1=−i�
E1 Tc

Tc E2
�. This

simply reduces Eq. �16� to the familiar Liouvillian equation,

�̇�t� = − i�H,��t�� , �17�

as we expected. Having ensured the path-integral technique
can reproduce the dynamical equation for an isolated double
quantum dot, we will apply it to the double quantum dot
coupling to electron reservoirs in Sec. III.

III. MASTER EQUATION FOR A DOUBLE QUANTUM
DOT GATED BY ELECTRODES

A double quantum dot between two electron reservoirs,
the source and drain electrodes controlled via a bias voltage
�see Fig. 1�, has a total Hamiltonian as

H = Hdot + Hrev + HI, �18�

where

Hdot = E1a1
†a1 + E2a2

†a2 + Tc�a2
†a1 + a1

†a2� �19a�

is the Hamiltonian of the double quantum dots,

Hrev = �
k

��LkaLk
† aLk + �RkaRk

† aRk� �19b�

is for the source and drain electrodes �reservoirs�, and

HI = �
k

�t1Lka1
†aLk + t2RkaRk

† a2 + H.c.� �19c�

is the coupling �interaction� between the double dot and the
reservoirs that depicts the electron tunneling between them,
where subscript k labels an electron state in the reservoirs, L
and R denote the reservoirs of the source �left� and drain
�right� electrodes, respectively, and t1Lk�t2Rk� is the electron
tunneling amplitude between the source �drain� and the left
�right� dot. Since we are only concerned in this work with
the dynamics of charge qubit, we omitted spin degrees of
freedom for electrons.

It should be pointed out that in Eq. �19a� we did not
include explicitly the interdot Coulomb repulsion. This is
because a typical interdot Coulomb energy is of the order of
hundreds of �eV, which is much larger than the energy-level
splitting � and the interdot tunnel coupling � �both are of the
order of tens of �eV or less� for charge qubit manipulation.4

As a result, the interdot Coulomb interaction simply leads
one to exclude the states corresponding to a simultaneous
occupation of the two dots.9,11 Thus, we will derive an exact
master equation for the reduced density matrix of the double
dot without considering the interdot Coulomb repulsion at
beginning. The master equation of the double dot in the
strong interdot Coulomb repulsion regime is then obtained
from the exact master equation by explicitly excluding the
states of doubly occupied two dots in terms of Bloch-type
rate equations, as we will see later.

To derive nonperturbatively the master equation of the
reduced density matrix for the double-dot system, we adopt
the treatment of the Feynman-Vernon influence functional
theory.8 This approach within the framework of path-integral
traces over the degrees of freedom of the environment �here
the electrodes� into a functional of the dynamical variables of
the system �the double quantum dot�. This functional is
called the influence functional by Feynman and Vernon,8

which contains all the dynamical effects from the backreac-
tion of the reservoirs to the system due to the coupling be-
tween them. Following the fermionic path-integral technique
presented in Sec. II, we depict the route to an exact master
equation aided with the results derived in detail in Appen-
dixes A and B.

A. Influence functional

Explicitly, the total density matrix of the double dot plus
the reservoirs obeys the quantum Liouvillian equation
i��tot�t� /�t= �H ,�tot�t��, which yields the formal solution

�tot�t� = e−iH�t−t0��tot�t0�eiH�t−t0�. �20�
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As we are interested in dynamics of the electrons in the
double dot, we shall concentrate on the reduced density ma-
trix for the double dot by tracing out the environmental vari-
ables, ��t�=TrE �tot�t�. Assuming initially that the dots and
the reservoirs are uncorrelated,22,28 �tot�t0�=��t0� � �E�t0�,
then the reduced density matrix describing the full dynamics
of the electrons in the double dot becomes

�� f	��t�	� f
 = d���0�d���0���0	��t0�	�0


	 J�� f
�,� f,t	�0,�0

�,t0� , �21�

where the propagating function is defined as

J�� f
�,� f,t	�0,�0

�,t0�

= D����;����ei�Sc���,��−Sc
����,���F����;���� , �22�

with Sc��� ,�� being the action of the double dot in the fer-
mion coherent-state representation given by Eq. �9� and
F���� ;���� is the influence functional which takes fully into
account the backreaction effects of the reservoirs to the
double dot and modifies the original action of the system
into an effective one, e�i/���Sc���,��−Sc

����,���F���� ;����
=e�i/��Seff��

��;����. The path integral D���� ;���� integrates
over all paths ���
�, ��
�, ���
�, and ��
� in the Grassmann
space bounded by ���t�=� f

�, ��t0�=�0, ���t0�=�0
�, and ��t�

=� f.
Let the reservoirs be initially in thermal equilibrium states

at temperature �−1; the influence functional can then be
solved exactly with the result �see the derivation in Appendix
A�:

F����;���� = exp �
i=1,2

�− 
t0

t

d

t0




d
��Fil�
 − 
���i
��
��i�
�� + Fil

��
 − 
���i
��
���i�
��

− 
t0

t

d

t0

t

d
��Fil�
 − 
���i
��
��i�
�� − Fil

��
 − 
����i
��
� + �i

��
����i�
�� + �i�
����� . �23�

The two time correlation functions in the influence func-
tional,

Fil�
 − 
�� = �
k

	tilk	2e−i�lk�
−
��, �24a�

Fil
��
 − 
�� = �

k

f l��lk�	tilk	2e−i�lk�
−
��, �24b�

are called the dissipation-fluctuation kernels, where f l��lk�
= 1

e���lk−�l�+1
, with l=L ,R for i=1,2, respectively, are the Fermi

distribution functions of the electron reservoirs, and �L,R are
the corresponding chemical potentials. These nonlocal time-
dependent functions contains the full dynamics effect from
the reservoirs to the double dot. We should also point out that
in the coherent-state representation, the influence functional
for a many-fermion environment has a form similar to that of
a many-boson environment29 except for some sign difference
due to the antisymmetric properties of fermion degrees of
freedom.

The physical meaning of the above influence functional is
very clear. The four terms contained in the exponential func-
tion of Eq. �23� correspond to four different physical pro-
cesses in a time-closed path formalism �see Fig. 2�. The first
term gives the contribution of the backaction effect of the
reservoirs to the double dot in terms of the time correlation
function Fil�
−
�� of Eq. �24a� in the forward process from
the time t0 to the time t. For the double time integrals it

contains, the first one starts from t0 to 
 and the second one
from t0 to t, sums over all the time sequences of the these
propagations. Resummation of these propagating processes
up to all orders of the system-reservoir coupling results in
exactly the exponential function appearing in Eq. �23�. Simi-
lar to the first term, the second term are just the backaction
effect of the reservoirs to the system in the backward process
from the time t back to the time t0 which is just the complex
conjugate of the first term. In terms of the Schwinger-
Keldysh Green’s-function approach, the time correlation
function in these two propagating processes are just the time-
ordered and antitime-ordered Green’s functions. The histo-
ries of the forward paths �i

��
� ,�i�
� and the backward paths
�i

��
� ,�i�
� are mixed up through the time correlation func-
tions as shown in the third and the fourth terms in Eq. �23�.
The third term in Eq. �23� represents the mix of the forward
and backward paths at time t. The last term is a mix of the
forward and backward paths at time t0 where the initial equi-
librium properties of the reservoirs, i.e., the Fermi statistics
and the temperature of the reservoirs, naturally enter into the
time correlation function Fil

��
−
��, as shown by Eq. �24b�.

FIG. 2. The closed-time path for the trace of the density matrix
of the reservoirs.
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As we see all the influences of the reservoirs on the
double dot are embedded in the two time-correlation func-
tions, i.e., the two dissipation-fluctuation kernels �Eq. �24��
in the influence functional. These two dissipation-fluctuation
kernels are related to each other through the dissipation-
fluctuation theorem. This will become clear by introducing a
spectral density defined as

Jil��� = �
k

	tilk	2��� − �lk� . �25�

Obviously, the spectral density contains all the information
about the reservoirs’ density of states involved in the electron
tunneling between the dots and reservoirs. Then time-
correlation function �24� can be expressed as

Fil�
 − 
�� = d�Jil���e−i��
−
��, �26a�

Fil
��
 − 
�� = d�

Jil���e−i��
−
��

e���−�l� + 1
, �26b�

This equation manifests the dissipation-fluctuation theorem
in an open quantum system. It tells that all the backreaction
effects of the reservoirs to the double dot are crucially deter-
mined by the spectral density Jil���.

B. Exact master equation

Now we can derive the master equation for the reduced
density matrix. As we see the effective action after integrat-
ing out the environmental degrees of freedom, i.e., combin-
ing Eqs. �22� and �23� together, still has a quadratic form in
terms of the dynamical variables of the fermion coherent
states. Thus the path integral �Eq. �22�� can be solved exactly
by utilizing the stationary path method and Gaussian
integrals.45,46 The resulting propagating function is simply
given by

J�� f
�,� f,t	�0,�0

�,t0� = A�t�exp �
i=1,2

� �if
� �i�t� + �i

��t0��i0

2

+
�i0

� �i�t0� + �i
��t��if

2
� , �27�

where A�t� is the contribution arisen from the fluctuations
around the stationary paths which will be given later. The
stationary paths �i�t� and �i�t0� are determined by the equa-
tions of motion,

�̇i�
� + i�Ei�i�
� + Tc�i��
�� + 
t0




d
�Fil�
 − 
���i�
��

− 
t0

t

d
�Fil
��
 − 
����i�
�� + �i�
��� = 0, �28a�

�̇i�
� + i�Ei�i�
� + Tc�i��
�� + 
t0




d
�Fil�
 − 
���i�
��

− 
t0

t

d
�Fil�
 − 
����i�
�� + �i�
���

+ 
t0

t

d
�Fil
��
 − 
����i�
�� + �i�
��� = 0, �28b�

subjected to the boundary condition �i�t0�=�i0 and �i�t�
=�if, while �i

��t0� and �i
��t� in Eq. �27� can be obtained from

the complex conjugate equations of Eqs. �28a� and �28b�,
respectively, under the boundary condition �i

��t�=�if
� and

�i
��t0�=�i0

� . The local terms �̇i+ i�Ei�i+Tc�i�� and �̇i+ i�Ei�i
+Tc�i�� in Eq. �28� are intrinsic and well describe the coher-
ent dynamics of the electron states in an isolated double
quantum dot, as we have discussed in Sec. II. The nonlocal
terms involving two different time correlation functions,
Fil�
−
�� and Fil

��
−
��, stem from the coupling to the res-
ervoirs. These two time correlation functions play quite dis-
tinct roles in the equations of motion. The interaction be-
tween the double dot and the electron reservoirs is mediated
through electron tunnelings between them. The correlation
Fil�
−
�� describes the backaction of the reservoirs to the
double dot due to the interaction between them. However,
the correlation function Fil

��
−
�� also harbors the Fermi-
Dirac statistic effect of the electron reservoirs which exists
even in the zero-temperature limit. The latter situation is
quite different from a bosonic environment where Fil

��
−
��
vanishes at zero temperature.29

The solutions of �i�t�, �i�t0� and �i
��t�, �i

��t0� determined
by Eq. �28� and its complex conjugate can be factorized from
the corresponding boundary conditions. It is not too difficult
to find that

��t� = �I − v�t��−1�u�t��0 + v�t�� f� , �29a�

��t0� = u†�t��I + �I − v�t��−1v�t��� f

− �I − u†�t��I − v�t��−1u�t���0. �29b�

Here we have again used the matrix notation �T= ��1�2� and a
same form for �. The new dynamical variables expressed as
two time-dependent 2	2 matrices, u�
� and v�
�, satisfy the
dissipation-fluctuation integrodifferential equations:

u̇�
� + iMu�
� + 
t0




d
�G�
 − 
��u�
�� = 0, �30a�

v̇�
� + iMv�
� + 
t0




d
�G�
 − 
��v�
��

= 
t0

t

d
�G��
 − 
��ū�
�� , �30b�

with the boundary conditions uij�t0�=�ij and vij�t0�=0, while
ū�
� in Eq. �30b� obeys the backward equation of motion to
u�
�, namely, ū�
�=u†�t+ t0−
� for t0�
� t. In Eq. �30�, we
have also defined the 2	2 matrices M = �

E1 Tc

Tc E2
�, Gij�
−
��
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=Fil�
−
���ij, and Gij
��
−
��=Fil

��
−
���ij. As we see u�
� is
determined purely by Fil�
−
�� while v�
� depends on both
correlation functions Fil�
−
�� and Fil

��
−
��. The full com-
plexity of the non-Markovian dynamics of charge coherence
in the double dot induced from its coupling to the reservoirs
is thus manifested through these equations of motion.

As �i
��t0� and �i

��t� satisfy, respectively, the complex con-
jugate equations of �i�
� and �i�
� with the boundary condi-
tion �i

��t�=�if
� and �i

��t0�=�i0
� , it is easy to find the similar

solution from Eq. �29� for �i
��t0� and �i

��t�. Substituting these
results into Eq. �27� and note the fact that v�
� is a Hermitian
matrix at 
= t, we obtain explicitly the exact propagating
function of the double-dot system:

J�� f
�,� f,t	�0,�0

�,t0� = A�t�exp�� f
†J1�t��0 + � f

†J2�t�� f

+ �0
†J3�t��0 + �0

†J1
†�t�� f� , �31�

where

J1�t� = w�t�u�t�, J2�t� = w�t� − I , �32a�

J3�t� = u†�t�w�t�u�t� − I, A�t� = 1/det�w�t�� , �32b�

with w�t�= �I−v�t��−1. All these time-dependent coefficients
can be fully determined by solving Eq. �30�.

Once the exact propagating function is obtained, the dy-
namics of the reduced density matrix �Eq. �21��, which fully
takes into account the backreaction of the electron reservoirs,
can be completely solved for any given initial electron state
of the double dot. The explicit solution of the reduced den-
sity matrix relies solely on the solution to the equations of
motion �Eq. �30�� which, in general, has to be solved numeri-
cally. To check the consistency, we may let the double dot be
decoupled from the electron reservoirs, namely, set tilk=0,
then the dissipation-fluctuation kernels vanish. As a result,
Eq. �30a� is reduced to Eq. �12� and u�t� is reduced to u0�t�
whose solution is given after Eq. �12�, while the solution of
Eq. �30b� gives v�t�=0. Consequently the propagating func-
tion Eq. �31� is reduced to Eq. �14� which recovers the exact
solution of the isolated double-dot system shown in Sec. II.

Having the explicit form of propagating function �31� in
hand, it is straightforward to derive the master equation for
the reduced density matrix directly from Eq. �21�. Here we
shall deduce an operator form of the master equation such
that all the time-dependent coefficients in the master equa-
tion are explicitly independent of the initial state of the
double dot as well as of any specific representation. Taking
the time derivative to Eq. �31�, eliminating the initial state
dependence and using the D-algebra of the fermion creation
and annihilation operators in the fermion coherent-state rep-
resentation �Eq. �15��, the exact master equation of the
double dot with a general spectral density at arbitrary tem-
perature and bias is given by

�̇�t� = �
ij

��ij�t��ai
†aj,��t��

+ �ij�t��2aj��t�ai
† − ai

†aj��t� − ��t�ai
†aj�

+ �ij
��t��aj��t�ai

† − ai
†��t�aj − ai

†aj��t� − ��t�ai
†aj��

+ �0�t���t� , �33�

where all time-dependent coefficients in Eq. �33� are deter-
mined by u�t� and v�t� through the following relations:

�ij�t� =
1

2
�u̇u−1 − �u†�−1u̇†�ij , �34a�

�ij�t� = −
1

2
�u̇u−1 + �u†�−1u̇†�ij , �34b�

�ij
��t� = �u̇u−1v + v�u†�−1u̇† − v̇�ij , �34c�

and �0�t�=Tr ��. The first term in the master equation is
indeed the generalized Liouvillian term which can be explic-
itly written as

�
ij

�ij�t��ai
†aj,��t�� = − i�H��t�,��t�� , �35a�

where

H��t� = E1��t�a1
†a1 + E2��t�a2

†a2 + Tc��t�a1
†a2 + Tc�

��t�a2
†a1

�35b�

is an effective Hamiltonian of the double quantum dot with
the shifted �renormalized� time-dependent energy levels and
the shifted interdot transition amplitude,

Ei��t� = i�ii �i = 1,2�, Tc��t� = i�12. �36a�

Using the equation of motion �Eq. �30a��, we further obtain

Ei��t� = Ei − Im�Wii�t��, i = 1,2, �36b�

Tc��t� = Tc +
i

2
�W12�t� − W21

� �t�� , �36c�

where

W�t� = 
t0

t

d
�F1L�t − 
� 0

0 F2R�t − 
�
�u�
�u�t�−1.

�36d�

Combining Eqs. �33� and �34� together lead to master equa-
tion �2� presented in Sec. I. It shows that the shifted energy
levels, E1,2� �t�, and the interdot transition amplitude, Tc��t�,
are entirely contributed by u�t� that involves only the time
correlation function Fil�t−
�. The rest of Eq. �33� describes
the dissipation and noise processes of electron charges with
non-Markovian behaviors having been embedded in these
time-dependent 2	2 matrix coefficients, ��t� and ���t�. We
call ��t� and ���t� the dissipation-fluctuation matrix coeffi-
cients or simply the dissipation-fluctuation coefficients here-
after. Note that ��t� is solely determined by u�t�, and ���t� is
given by both u�t� and v�t� where the temperature depen-
dence is explicitly described by v�t� through the temperature-
dependent time correlation function Fil

��t−
�. Thus all the
time-dependent coefficients in the master equation are non-
perturbatively determined by dissipation-fluctuation equation
of motion �30� and fully account for the backreaction effects
of the reservoirs to the double dot.
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C. Relating to the perturbative/Markov master equations

Currently, master equations for open quantum systems are
mostly obtained based on perturbation and/or Markov ap-
proximations; it is certainly interesting to show how the per-
turbative or Markov master equations for this double-dot
system can be reduced from the above exact non-Markovian
master equation. As we have pointed out the full non-
Markovian dynamics is depicted by the time-dependent co-
efficients in the exact master equation, Ei��t�, Tc��t�, ��t�, and
���t�, and these coefficients are completely determined by
dissipation-fluctuation equation of motion �30�. The pertur-
bative or Markov master equations can be simply gotten by
either taking a perturbative expansion in terms of coupling
strength or ignoring the backreaction memory effect from the
environment.

1. Perturbative expansion

The perturbative expansion can be applied to the equation
of motion �Eq. �30a�� straightforwardly. Let

u�
� = u0�
� + u2�
� + u4�
� + ¯ , �37�

where u2n�
�, n=0,1 ,2 , . . ., is the 2nth order contribution in
terms of the coupling strength tilk �corresponding to the nth
order in terms of the time correlation functions Fil�
−
��, the
matrix elements of G�
−
�� in Eq. �30��. The solution to the
zero order, u0�
�, is already given by Eq. �13� in Sec. II, i.e.,
u0�
�=exp�−iM�
− t0��. It is easy to find

u2�
� = − u0�
�
t0




d
�u0
−1�
��

t0


�
d
�G�
� − 
��u0�
�� ,

�38a�

u4�
� = − u0�
�
t0




d
�u0
−1�
��

t0


�
d
�G�
� − 
��u2�
�� ,

�38b�

The nonexistence of odd powers of the coupling strength in
the above expansion is due to the backaction between the
system and environment, namely, the contribution comes
from electrons tunnel from the environment into the dots and
then tunnel back to the environment. The solution to Eq.
�30b� is also easy to obtain,

v�
� = v0�
� + v2�
� + ¯ = 0

+ u0�
�
t0




d
�u0
−1�
��

t0

t

d
�G��
� − 
��ū0�
�� + ¯ .

�39�

It is indeed not difficult to find the solution of Eq. �30� to all
orders in this perturbative expansion.

Substituting the above solutions into the time-dependent
coefficients, we can systematically resolve the perturbative
expansion of the non-Markovian master equation order by
order in terms of the coupling strength. If the coupling
strength is much smaller in comparison with the interdot
coupling Tc in the double dot, one can take the expansion
only up to the second order of the coupling strength. Then,

u̇�t�u�t�−1 � − iM − 
t0

t

d
G�t − 
�u0�
�u0
−1�t� , �40a�

u̇�t�u�t�−1v�t� + v�t��u†�t��−1u̇†�t� − v̇�t�

� − 
t0

t

d
G��t − 
�ū0�
� + H.c. �40b�

All the coefficients in the master equation, Ei��t�, Tc��t�, ��t�,
and ���t�, can be explicitly calculated using relationships
�34� and �36�. The resulting master equation is the second-
order master equation in the perturbation theory.

2. Markov approximation

It is also interesting to see how the conventional Markov
dynamics can be directly obtained from our exact non-
Markovian master equation under Markov approximation.
Markov approximation is given by uij�
��eiEi�
�−t0�

�uij�
�eiEi�
−t0� and vij�
��eiEi�
�−t0��vij�
�eiEi�
−t0�, namely,
approximately taking the dynamical variables u�
� ,v�
� to
the ones that depend only on the present time so that any
memory regarding the earlier time can be ignored. Such a
Markov approximation is mainly based on the physical as-
sumption that the correlation time �memory time� of environ-
ment is very small compared with the typical time scale of
the system evolution. Also under this assumption we can
take the time limit �t− t0 ,
− t0→��,47 and then the integral
kernels in Eq. �30� reduce to


t0




d
�Fil�
 − 
��uij�
�� � ��l

2
+ i�Ei�uij�
� , �41a�


t0

t

d
�Fil
��
 − 
��ūij�
�� � f l�lūij�
� , �41b�

where �Ei=P�0
� Jil���d�

�−Ei
�P denotes the Cauchy principal

value� and �l=2�Jil�Ei� is the contribution from the integra-
tion pole with l=L ,R for i=1,2, respectively. fL,R are the
Fermi distribution functions of the reservoirs. In this Markov
approximation, the equation of motion �Eq. �30�� can be
solved analytically and the solution is

u�t� = exp�−�iE1� +
�L

2
iTc

iTc iE2� +
�R

2
��t − t0�� , �42a�

v�t� = 
t0

t

d
u�t + t0 − 
�� fL�L 0

0 fR�R
�ū�
� , �42b�

where Ei�=Ei+�Ei.
With the above explicit solution for u�t� and v�t�, we can

calculate all the coefficients in the master equation in the
Markov approximation. Noting that ū�
�=u†�t+ t0−
�, it is
easy to find
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u̇u−1 = −�iE1� +
�L

2
iTc

iTc iE2� +
�R

2
� , �43a�

u̇u−1v + v�u†�−1u̇† − v̇ = − � fL�L 0

0 fR�R
� . �43b�

As a result, in the Markov approximation, all the time-
dependent coefficients in the master equation become con-
stants:

E1,2� �t� = E1,2 + �E1,2, Tc��t� = Tc, �44a�

�ij�t� =
1

2
�l�ij, �ij

��t� = − f l�l�ij . �44b�

Non-Markovian master equation �33� is then reduced to the
Markov master equation. It is worth pointing out that this
Markov approximation is valid to all kinds of spectral den-
sities. A different spectral density may produce the energy-
level shift, �Ei=P�

Jil���d�

�−Ei
, and decay rate, �l=2�Jil�Ei�, dif-

ferently. As a result, our exact non-Markovian master
equation can explore not only more complicated situation
where Markov approximation is unreachable but also differ-
ent spectral densities between the system and the environ-
ment even in the Markovian limit.

Furthermore, it is easy to check that Eq. �44� can also be
obtained by applying Markov approximation �41� into
second-order perturbation solution �40�. In other words, the
Markov approximation only accounts the second-order con-
tribution from the system-environment coupling. This is be-
cause neglecting the environmental memory effect automati-
cally ignores the backreaction effects of the environment to
the system. The backreaction here is defined as electrons
correlatively tunnel forth and back between the environment
and the dots for many times, which corresponds to high-
order contributions in the perturbation expansion. For a
weak-coupling strength, the second-order perturbative mas-
ter equation could be a good approximation where non-
Markovian decoherence is partially taken into account. If the
environmental time scale is much shorter than the typical
time scale of the double dot, the Markov master equation can
also give a good description to the decoherence dynamics.
However, for the double-dot charge qubit gated by elec-
trodes, the coupling strength between the dots and electrodes
is comparable to the interdot coupling of the double dot, and
the environmental time scale of the electrodes is also of the
same order of the Rabi frequency of the charge qubit.4 Then,
a fully nonperturbative and non-Markovian master equation
will become useful for understanding decoherence dynamics
of the charge qubit.

D. Bloch-type rate equations for zero and strong interdot
Coulomb repulsion cases

1. No interdot Coulomb repulsion

To closely examine the decoherence of electron charge
dynamics in the double dot, it is more convenient to rewrite

master equation �33� as a set of Bloch-type rate equations in
terms of the localized charge states in the double dot. With-
out considering the interdot Coulomb repulsion, the rate
equations can be obtained directly from master equation �33�
in the charge configuration space containing the states of
empty double dot, the first dot occupied, the second dot oc-
cupied, and both dots occupied. We label these four states by
	j
 , j=0,1 ,2 ,3. Then the master equation in the above basis
becomes

�̇00 = �̃11�11 + �̃21�12 + �̃12�21 + �̃22�22 + �0�00, �45a�

�̇11 = ��0 − 2�̄11��11 + �̄−
��12 + �̄−�21 − �11

� �00 + �̃22�33,

�45b�

�̇22 = ��0 − 2�̄22��22 + �̄+
��12 + �̄+�21 − �22

� �00 + �̃11�33,

�45c�

�̇12 = �− i�� + �0 − Tr �̄��12 + �̄+�11 + �̄−�22

− �12
� �00 + �̃12�33, �45d�

�̇33 = �12
� �21 + �21

� �12 − �11
� �22 − �22

� �11 + ��0 − 2Tr�̄��33.

�45e�

Here the density-matrix elements are defined by �ij = �i	�	j
.
We have also defined all the time-dependent coefficients in

the rate equations as �̃�t�=2��t�+���t�, �̄�t�=��t�+���t�,
�̄�= � iTc��t�− �̄12, and ���t�=E1��t�−E2��t�, where Ei��t�,
Tc��t�, ��t�, ���t�, and �0�t� are the time-dependent transport
coefficients contained in the master equation and are explic-
itly given by Eqs. �34� and �36�. These time-dependent coef-
ficients in the rate equations thus fully characterize the non-
Markovian dynamics of electrons in the double dot. The first
and the last rate equations account for electron charge leak-
age effects in this device, while other three rate equations
depict charge qubit decoherence dynamics under the influ-
ence of the reservoirs.

For a constant spectral density that has been widely used
in the literature, the time-correlation function becomes

Fil�
 − 
�� →
�l

2�


−�

�

d�e−i��
−
�� = �l��
 − 
�� , �46�

where �l=2��l	tilk	2 �l=L ,R for i=1,2� and �L,R are the den-
sities of states for the left and right electron reservoirs. Then
in the Markovian limit �t− t0 ,
− t0→��,47 the integral ker-
nels in Eq. �30� reduce to


t0




d
�Fil�
 − 
��uij�
�� �
1

2
�luij�
� , �47a�


t0

t

d
�Fil
��
 − 
��ūij�
�� � f l�lūij�
� . �47b�

The factor 1
2 in Eq. �47a� comes from the boundary of the

time integration sitting upon 
, and fL,R in Eq. �47b� are the
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Fermi distribution functions of the reservoirs.
Comparing Eq. �47� with Eq. �41�, it shows that a con-

stant spectral density naturally leads to the Markov approxi-
mation with �Ei=0. As a result, for a constant spectral den-
sity in the Markovian limit, all the time-dependent
coefficients in the master equation become constant:

E1,2� �t� � E1,2, Tc��t� � Tc, �48a�

�ij�t� �
1

2
�l�ij, �ij

��t� � − f l�l�ij . �48b�

In other words, in the Markovian limit with a constant spec-
tral density, there is no renormalization effect to the energy-
level shift and the interdot transition amplitude. The
dissipation-fluctuation effects are simply reduced to the time-
independent tunneling rates between the dots and the reser-
voirs. In fact, the differences of time-dependent and time-
independent coefficients manifest the non-Markovian
dynamics of electron charges in the double dot. We shall
present quantitatively such differences in Sec. IV.

For a constant spectral density in the Markovian limit, the
rate equations are simply reduced to

�̇00 = f̄ L�L�11 + f̄R�R�22 − �fL�L + fR�R��00, �49a�

�̇11 = − � f̄ L�L + fR�R��11 + iTc��12 − �21� + fL�L�00 + f̄R�R�33,

�49b�

�̇22 = − � f̄R�R + fL�L��22 − iTc��12 − �21� + fR�R�00 + f̄ L�L�33,

�49c�

�̇12 = �− i� −
�L + �R

2
��12 + iTc��11 − �22� , �49d�

�̇33 = − � f̄ L�L + f̄R�R��33 + fL�L�22 + fR�R�11, �49e�

where f̄ L,R= �1− fL,R� and �=E1−E2. Under the large bias
limit, fL=1, fR=0, the above rate equations reproduce the
rate equations obtained by Gurvitz and Prager9 for the double
dot without considering the interdot Coulomb repulsion:

�̇00 = − �L�00 + �R�22, �50a�

�̇11 = �L�00 + �R�33 + iTc��12 − �21� , �50b�

�̇22 = − ��L + �R��22 − iTc��12 − �21� , �50c�

�̇12 = �− i� −
�L + �R

2
��12 + iTc��11 − �22� , �50d�

�̇33 = − �R�33 + �L�22. �50e�

2. Strong interdot Coulomb repulsion

On the other hand, realistic experiments of the double dot
are set up in the strong Coulomb blockade regime where not

only each of dots has only one effective energy level but also
there are no states of simultaneous occupation of the two
dots. In other words, the configuration space of the localized
charge states in the double-dot system with a strong interdot
Coulomb repulsion only contains the states of empty double
dot, the first dot occupied, and the second dot occupied, de-
noted by 	j
 , j=0,1 ,2, respectively. The corresponding rate
equations in this strong Coulomb blockade regime for an
arbitrary spectral density can also be obtained by simply ex-
cluding the doubly occupied states in Eq. �45�. Since the rate
of the doubly occupied state 	3
 in the case of ignoring in-
terdot Coulomb repulsion depends on the populations �11
and �22. This probability flow from states 	1
 and 	2
 to 	3

should be redirected back into states 	1
 and 	2
 in the strong
interdot Coulomb repulsion regime. Meanwhile, to ensure
the probability conservation without the doubly occupied
states, a correction to the dependence of the coherence ele-
ments, �12 and �21, in the rate equations for �11 and �22 must
also be taken into account guided by the condition �12

� �21
+�21

� �12−�11
� �22−�22

� �11=0. This condition indeed forces the
doubly occupied state to decouple from other states in the
double dot as one can see from the rate equation �̇33 in Eq.
�45�. These modifications can be done explicitly by taking
the following shift to the coefficients in noninteracting rate
equation �45�:

�̄ii → �̄ii +
1

2
� j j

� , �̄ij → �̄ij −
1

2
�ij

� , �51�

with i� j. In fact, the above coefficient shift also automati-
cally cancels the �0 dependence of �33 in Eq. �45�, which is
indeed a criterion for entirely excluding the double-occupied
state from the reduced density matrix, as one can directly see
from the expression of master equation �33�. Then the rate

equation of �33 in Eq. �45� becomes �̇33= �−2 Tr �̄��33, its
solution is �33�t�=0 if initially �33�t0�=0. This implies that
no leakage into the double-occupied state will occur. As a
result, the rate equations in the strong interdot Coulomb re-
pulsion regime are given by

�̇00 = �̃11�11 + �̃21�12 + �̃12�21 + �̃22�22 + �0�00, �52a�

�̇11 = − �̃11�11 + �̃−
��12 + �̃−�21 − �11

� �00, �52b�

�̇22 = − �̃22�22 + �̃+
��12 + �̃+�21 − �22

� �00, �52c�

�̇12 = �− i�� −
1

2
Tr �̃��12 + �̃+�11 + �̃−�22 − �12

� �00,

�52d�

where �̃��t�= � iTc��t�− 1
2 �̃12�t�. This set of the rate equa-

tions depicts the full non-Markovian dynamics of the double
dot in the strong interdot Coulomb repulsion regime.

For the case of a constant spectral density in the Markov-

ian limit, �̃ij�t�= �2��t�+���t��ij→ f̄ l�l�ij, �̃��t�→ � iTc,
and ���t�→�. The rate equations under such circumstances
are reduced to the rate equations for the double dot in the
strong interdot Coulomb repulsion regime, given in Ref. 11,
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�̇00 = − �fL�L + fR�R��00 + f̄ L�L�11 + f̄R�R�22, �53a�

�̇11 = fL�L�00 + iTc��12 − �21� − f̄ L�L�11, �53b�

�̇22 = fR�R�00 − iTc��12 − �21� − f̄R�R�22, �53c�

�̇12 = �− i� −
1

2
� f̄ L�L + f̄R�R���12 + iTc��11 − �22� .

�53d�

Furthermore, in the large bias limit, fL=1, fR=0, the above
rate equations lead to the rate equations of Stoof and
Nazarov:48

�̇00 = − �L�00 + �R�22, �54a�

�̇11 = �L�00 + iTc��12 − �21� , �54b�

�̇22 = − �R�22 − iTc��12 − �21� , �54c�

�̇12 = �− i� −
�R

2
��12 + iTc��11 − �22� . �54d�

In summary, we have derived in this section an exact mas-
ter equation for the double dot gated by electrodes and cor-
responding Bloch-type rate equation �45� without consider-
ing the interdot Coulomb interaction as well as rate equation
�52� for the strong interdot Coulomb repulsion. For conve-
nience, we call Eq. �45� the interaction-free rate equation and
Eq. �52� the strong-interaction rate equation hereafter. Other
approximated rate equations that have been used in the lit-
erature are obtained at well-defined limit of the present for-
mulas.

IV. NON-MARKOVIAN DYNAMICS OF CHARGE QUBIT

With the formulas derived in Sec. III, we can now sys-
tematically explore the non-Markovian dynamics of the
charge qubit for this double-dot system. The coherence �de-
coherence� dynamics of electron charges in the double dot is
determined by its internal structure as well as external opera-
tions. The internal structure includes the spectral properties
of the reservoirs as well as the couplings between the dots
and the reservoirs embedded in the spectral density. The ex-
ternal operations include charge qubit initialization, its co-
herence manipulation, and the qubit state readout through the
bias controls of the source and drain electrodes. Non-
Markovian decoherence effects of these internal structure
and external operations to the charge qubit are manifested
through the time-dependent coefficients in the master equa-
tion, which is completely determined by Eq. �30� after the
spectral density Jil��� is specified. In fact, the time correla-
tion functions directly tell us the length of the correlation
time which determines to what extent the time-dependent
fluctuation and memory effect become important. The longer
the correlation time is, the more memory effect acts on the
electron dynamics in the double dot and vice versa.

To be more specific, we should first specify the spectral
density Jil��� for the source and drain electrodes. Unlike the
bosonic environment where a general spectral density J���
=��� �

�c
�n−1e−�/�c ��c is a high-frequency cutoff and � is a

dimensionless coupling constant� was defined and used to
classify the bosonic environment as Ohmic if n=1, sub-
Ohmic if 0�n�1, and super-Ohmic if n�1,22 for a fermi-
onic environment a general spectral density should not be a
Poisson-type or Gaussian-type distribution function because
of the Fermi statistics. Here we shall use a Lorentzian spec-
tral density that has been used in the study of the Kondo
effect,34 the influence of a measuring lead on a single dot,49

and molecular wires coupling to electron reservoirs.50 The
Lorentzian spectral density we used here has a form

Jil��� =
�ldl

2/2�

�� − Ei�2 + dl
2 , �55�

where Ei is chosen to be the energy levels of the double dot
and l=L ,R for i=1,2, respectively. There are two parameters
in Jil��� that characterize the time scales of the reservoirs.
The parameters dL,R describe the widths of the Lorentzian
distributions, which tell how many states in the reservoirs
around E1,2 effectively involve in the electron tunneling be-
tween the reservoirs and dots. Hence, the inverse dL,R

−1 char-
acterize the time scales of the source and drain electrodes.
Another parameter is the electron tunneling strength or the
tunneling rate between the reservoirs and dots, �L,R, its in-
verse characterizes the time scale of the electron tunneling
process itself between the reservoirs and dots. Indeed, �L,R
also describe leakage effects of electrons from dots to the
reservoirs and vice versa. Thus a Lorentzian spectral density
well depict the time scales of non-Markovian processes in
this open quantum system.

Also, the choice of a Lorentzian spectral density makes it
easy to recover the constant spectral density which has been
often used in the literature. In fact, taking the large width
limit, namely, assuming all the electron states in the reser-
voirs have an equal possibility for electron tunneling be-
tween the reservoir and dot, then 2�Jil��� →

dl→�

�l reproduces

the constant spectral density that has often been used in the
study of both quantum transport and quantum decoherence
phenomena in nanostructures. In this limit, the time scale of
the reservoirs is suppressed. Furthermore, in the previous
investigations, especially in the study of quantum transport
phenomena, one also takes a long-time limit. Combining
these two limits �the constant spectral density and long-time
limit� together, the exact master equation is reduced to the
Bloch-type rate equations in the Markov approximation ob-
tained by other authors,9,11,48 as we have shown in Sec. III.
Hence, with a Lorentzian spectral density, it is not only con-
venient to analyze in detail the non-Markovian dynamics but
also enables us to easily make a comparison with the Markov
dynamics.

For a Lorentzian spectral density, the corresponding
temperature-independent time correlation function can be ex-
actly calculated. The result is
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Fil�
 − 
�� =
�ldl

2
exp�− �dl + iEi�	
 − 
�	� . �56�

Obviously, dL,R
−1 describes the correlation times of the reser-

voirs. The wider or narrower it is, the shorter or longer the
correlation time will be. The internal structure of the double
dot is characterized by the energy-level splitting �=E1−E2
and the interdot tunnel coupling �=2Tc, its time scale T0 is
given by the inverse of the bare Rabi frequency �0
=��2+�2. The non-Markovian dynamics should be domi-
nated when the two typical time scales, �0

−1 and dL,R
−1 , are in

the same order of magnitude. There is another time scale, the
reservoirs’ temperature �=1 /kT that also influences the non-
Markovian dynamics of the charge qubit in certain cases. In
the current experiments for charge qubit manipulation,4 the
temperature is roughly fixed at 100 mK. We will take this
temperature throughout our analysis to the charge qubit de-
coherence.

A. Time-dependent coefficients in the master equation and
non-Markovian dynamics

Once the spectral density is specified, the full non-
Markovian dynamics of charge qubit in the double dot can be
depicted using master equation �33�, or more specifically
corresponding Bloch-type rate equations �45� and �52� for
the cases of no interdot Coulomb repulsion and strong inter-
dot Coulomb repulsion double dot, respectively. To solve the
master equation or equivalently the rate equations, we must
determine first the time-dependent coefficients contained in
these equations, namely, the shifted �renormalized� energy-
level splitting ���t�=E1��t�−E2��t� and interdot tunneling cou-
pling ���t�=2Tc��t�, as well as the dissipation-fluctuation co-
efficients ��t� and ���t�. These transport coefficients are
completely determined by the functions u�t� and v�t� as the
solutions of dissipation-fluctuation equation of motion �30�
which has to be solved numerically for a given spectral den-
sity.

Using the Lorentzian spectral density �Eq. �55��, we can
calculate explicitly all the time-dependent transport coeffi-
cients in the master equations and then discuss the corre-
sponding non-Markovian dynamics by comparing with the
Markovian limit in various different time scales. We shall
first analyze the time-dependent coefficients for the charge
qubit initialization where a bias is applied to the double dot
and the double dot is adjusted to be off-resonance, i.e.,
eVSD=�L−�R�0 and �=E1−E2�0.4 We will examine
when the large bias limit is reached and how the initialization
works. After that we will go to the coherent manipulation
regime where the double dot is set up symmetrically �E1
=E2� and the chemical potentials of the electron reservoirs
are aligned above the energy levels of two dots with zero-
bias voltage ��L=�R�. The time dependence of ���t� ,Tc��t� as
well as ��t� and ���t� in this regime will tell us when the
non-Markovian dynamics becomes important during the
charge qubit evolution.

Dissipation-fluctuation equation of motion �30� shows
that only the solution of v�t� depends on the Fermi distribu-
tion function in the reservoirs. In other words, only ���t�

sensitively depends on the bias. Other coefficients, ���t�,
Tc��t�, and ��t�, do not depend on the chemical potentials
�L,R and thus the bias. Their time dependencies are com-
pletely determined by the internal parameters of the double
dot and the spectral density. In the initialization scheme
where a bias is presented and the energy splitting of the two
levels in the double dot is nonzero within the transport win-
dow, the time dependence of �� is plotted in Fig. 3 by vary-
ing the bias voltage. We find that the large bias limit is
reached at about 100 �eV for the given internal parameters:
�=30 �eV, �=10 �eV, �L,R=�, and dL,R=� /2, with �0
=��2+�2�32 �eV being the bare Rabi frequency of the
charge qubit. This large bias limit in Fig. 3 shows that the
curves for eVSD=90 �eV are very close to the curves of
eVSD=430 �eV, and the curves for eVSD=130 �eV per-
fectly overlap with the curves of eVSD=430 �eV.

Figure 4 shows the time dependence of other coefficients
for different energy-level splitting of the double-dot states
��=0,10,70 �eV� with different tunneling rates ��L=�R
=2.5,10,25 �eV�. The result shows that ���t�=0 for �=0,
and the initial value Re�Tc���0� is always equal to Tc with
Im�Tc���0� being zero in all the cases we have calculated. For
a small tunneling rate ��L,R�� /2�, the time dependence of
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FIG. 3. �Color online� The time dependence of �� by varying
the bias voltage. The double dot is set to be off-resonance with �
=30 �eV, �=10 �eV, �L,R=�, and dL,R=�0 /2. �a� and �d� show
the two diagonal matrix elements of ��. Since �� is Hermitian only
one of the off-diagonal elements is plotted with the real part shown
in �b� and the imaginary part in �c�. The period of the bare Rabi
cycle is T0=2� /�0.

MATISSE W. Y. TU AND WEI-MIN ZHANG PHYSICAL REVIEW B 78, 235311 �2008�

235311-12



these coefficients is almost negligible �see red solid lines in
Fig. 4�. The time-dependent effect appears when the tunnel-
ing rates between the reservoirs and dots become relatively
large. These time-dependent behaviors vary sensitively on
the energy splitting of the double-dot states. Increasing the
energy splitting � changes the time-dependent behaviors of
all the coefficients significantly, as shown in Fig. 4.

The dynamics of electron charges in this initialization re-
gime is plotted in Fig. 5. If we dope only one excess electron
in the left dot with the right dot being empty, the efficiency
of keeping this initial state decreases as the bias decreasing
�see Fig. 5�a��. If the two levels of the double dot are in
resonance ��=0� or the interdot tunnel coupling is larger
than the tunneling rates ��2�L,R, it also has a low effi-
ciency to keep the double dot in the initial state �11=1. A
large bias configuration �eVSD larger than 100 �eV� main-
tains the double dot in the initial state �11=1 very well. Fur-
thermore, for a large bias it also quickly leads the double dot
into the state �11�1 even if the initial state is �00=1 �both
dots are empty initially� or �22=1 �the left dot is empty but
the right dot is occupied by one excess electron�, as shown in
Fig. 5�b�. These numerical solutions are obtained using

interaction-free rate equation �45�. But strong-interaction rate
equation �52� gives qualitatively the same result for initial-
ization. Taking the bias to be 650 �eV and the reservoirs’
temperature to be 100 mK that have used in experiments,4 a
very efficient initialization of the charge qubit can be ob-
tained, as shown in Fig. 5.

Meanwhile, Fig. 4 shows that for a relatively large tun-
neling rate �L,R, the smooth time oscillation of all the coef-
ficients at small � become discontinuing at a relatively large
� value. Such discontinuities correspond to the electron hop-
ping to the localized charge states in the double dot where
the interdot tunnel coupling � is almost negligible in com-
parison with the level splitting �. Such discontinuities are
also manifested perfectly in the electron dynamics. The dis-
continuities coincide with the times at which the electron is
found in a localized charge state of the double dot in a very
high probability. Figures 6�a� and 6�b� are obtained using
rate equations �45� and �52�, respectively, where we plot the
corresponding electron charge dynamics together with the
time dependence of �11. We find that for a large bias, the
electron charge dynamics given by interaction-free rate equa-
tion �45� and strong-interaction rate equation �52� display the
same feature, including the coincidence between the discon-
tinuities in the time-dependent coefficients and the emer-
gence of a localized charge state in the double dot. Note that
if a sufficiently large bias is applied across the double dot,
initialization can still be achieved regardless of these discon-
tinuities. This is because a large bias is the most dominant
factor in this situation. As a conclusion, initialization of
charge qubit in the double dot can be easily achieved in a
large bias limit with relatively small tunnel coupling and
tunneling rates. All these parameters are tunable in experi-
ments.

Now we turn into the regime for charge qubit rotations
where the double dot is set up at the resonant levels �E1
=E2=E� and the Fermi surfaces of the electron reservoirs are
aligned above the resonant levels ��L=�R=� and �−E�0�.
In other words, the double dot is set to be symmetric and
unbiased for charge coherence manipulation.4 Figures 7–9
show the time dependencies of the shifted interdot tunnel
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FIG. 4. �Color online� The time dependence of the coefficients
���t�, Tc��t�, and ��t� for different energy splitting � and tunneling
rate �L,R at the interdot coupling �=10 �eV and the spectral
widths dL,R=� /2.
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FIG. 5. �Color online� �a� The time evolution of �11, the prob-
ability of finding one excess electron in the left dot with the right
dot being empty, is plotted at various bias when the initial state is
�11=1. �b� The time evolutions of �11 �black dash-dotted line� and
�00 �green long-dashed line� when the initial state is an empty state
��00=1�, where eVSD=650 �eV. Other input parameters used here
are the same as that in Fig. 3.
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coupling ���t�, as well as the dissipation-fluctuation matrices
��t� and ���t� for the symmetric double dot by varying the
chemical potential �−E, the spectral widths dL,R, and the
tunneling rates �L,R, respectively, from which we can deter-
mine the time scales within which non-Markovian processes
dominate the charge coherence dynamics at zero bias. We
find that for the symmetric double dot, the shifted energy-
level splitting ���t�, and the imaginary part of the shifted
interdot tunnel coupling Im ���t� are kept to be zero as we
have already pointed out in Fig. 4. The off-diagonal element
�12�t� and the imaginary part of �12

� �t� are found also to be
zero, while the diagonal elements �11�t�=�22�t� and �11

� �t�
=�22

� �t�. All the time-dependent coefficients change in time
in the beginning and then approach to an asymptotic value
�the Markovian limit� at different time scales. These time-
dependence behaviors will be used to analyze the decoher-
ence dynamics of charge qubit in Sec. IV B.

In Fig. 7 we plot the shifted interdot tunnel coupling
���t�, the dissipation-fluctuation matrices �11�t� and �11,12

� �t�
by varying the chemical potentials with respect to the energy
levels of the double dot, �−E. The red solid, blue long-
dashed, and the black short-dashed lines correspond to �
−E=0, 25, and 50 �eV respectively. In Fig. 7 the spectral

widths dL,R=�0 /2, where �0=� is the bare Rabi frequency
of the double dot. In other words, the time scale of the res-
ervoirs is chosen about two Rabi cycles of the system. A
large amplitude variation in these time-dependent coeffi-
cients within the time scale of the reservoirs is clearly shown
in the figure. After that time, all these time-dependent coef-
ficients approach to a steady value which corresponds to
their asymptotic values as a Markovian limit. This indicates
that the possible non-Markovian dynamics is mainly caused
by the time fluctuations of these coefficients within the char-
acteristic time of the reservoirs.

Figure 8 is the same plot with varying the electron tun-
neling rates between the reservoirs and dots but fixing the
chemical potentials at �−E=�. The small tunneling rate
�L,R=2.5 �eV ��� /2� does not show a significant time
variation in the dissipation-fluctuation coefficients, as also
shown in Fig. 4. The shifted interdot tunnel coupling at this
tunneling rate is very close to the bare one ����; see the red
solid line in Fig. 8�a�. This implies that a small electron
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FIG. 6. �Color online� The coincidence between the discontinui-
ties in �11�t� �the green dot-dashed line� and the emergence of a
localized charge state in the double dot. The input parameters �
=70 �eV, �=10 �eV, dL,R=� /2, and �L,R=25 �eV with the bias
eVSD=120 �eV such that the initialization can be achieved. �a� For
the double dot without considering the interdot Coulomb repulsion.
�b� For the double dot in the strong interdot Coulomb repulsion
regime.
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FIG. 7. �Color online� �a� The shifted interdot tunnel coupling
���t� and ��b�–�d�� the dissipation-fluctuation matrix elements,
�11�t� and �11,12

� �t�, by varying the chemical potential �=�L,R. The
dot parameters E=E1=E2 and �=10 �eV. �L,R=� and dL,R=� /2.
The matrix �� is Hermitian so that only one of the off-diagonal
elements is presented here. The red solid, blue long–dashed, and the
black short-dashed lines correspond to �−E=0, 25, and 50 �eV,
respectively.
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tunneling rate between the reservoirs and dots �corresponds
to a small leakage effect� does not manifest the non-
Markovian dynamics significantly. Increasing the tunneling
rates enlarges the charge leakage effect from the reservoirs to
dots and vice versa, thus enhances the non-Markovian effects
as well, as shown by the giggling and wiggling time evolu-
tions of the dissipation-fluctuation coefficients in the figure.
The time dependence of shifted interdot tunnel coupling ��
at large tunneling rates also has a significant shift from the
bare one � besides the oscillation within the non-Markovian
time region. Meanwhile, the charge oscillation frequency has
different shifts from the bare Rabi frequency for different
�L,R values. How these time-dependent �non-Markovian� be-
haviors influencing the charge coherence will be discussed in
detail in Sec. IV B.

Figure 9 shows how the time dependence of the shifted
interdot tunnel coupling and the dissipation-fluctuation coef-
ficients change by varying the spectral widths dL,R. We plot
these time-dependent coefficients for three different spectral
widths: dL,R=1, 5, and 25 �eV. The result shows that when
dL,R=25 �eV, the dynamics of the double dot already
reaches to the Markovian limit, namely, all the time-
dependent coefficients approach their asymptotic values in a

very short time �less than a half cycle of the bare Rabi
oscillation�. When the spectral widths dL,R becomes small
���� so that the characteristic time of the reservoirs be-
comes long�, the time oscillation of all the transport coeffi-
cients becomes strong. Correspondingly the charge dynamics
is dominated by non-Markovian processes.

The above numerical results tell that the spectral widths
dL,R of the reservoirs �mainly as a memory effect� and the
tunneling rates �L,R between the reservoirs and dots �mainly
as a leakage effect� are two basic parameters for character-
izing the occurrence of non-Markovian dynamics in this
double-dot device. Comparing the results in Figs. 7–9, we
find that for the coherence manipulation of charge qubit
where the double dot is unbiased,4 the time for the
dissipation-fluctuation coefficients reaching a steady limit
depends on the spectral widths of the tunneling spectra as
well as the tunneling rates between the reservoirs and dots.
The Markovian limit often used in the literature is valid for
the electron reservoirs having a relatively small tunneling
rate �negligible leakage effect� and a large spectral width
�negligible memory effect�. The former implies the validity
of the Born approximation and the latter corresponds to the
Markov approximation. The chemical potentials of the elec-
tron reservoirs controlled by the external bias voltage just
modifies the values of the dissipation-fluctuation coefficients
�� without altering the characteristic times of the reservoirs
and the system, as shown in Figs. 3 and 7. However, the
chemical potential can be very efficient in suppressing the

0 2 4 61 3 5
t/T0

0

0.4

0.8

��
��

(d)

0 2 4 61 3 5
t/T0

-12

-8

-4

0

4

��
��

(c)

0 2 4 61 3 5
t/T0

-12

-8

-4

0

4

� �
�

�L,R�����eV
�L,R��	�eV
�L,R����eV

(b)

0 2 4 61 3 5
t/T0

10

20

30

40


'

(a)

FIG. 8. �Color online� The same plot as in Fig. 7 with fixing the
chemical potentials at �−E=� and varying the electron tunneling
rates between the reservoirs and dots �L,R symmetrically. The other
parameters are the same as in Fig. 7.
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FIG. 9. �Color online� The same plot as in Fig. 8 by varying dL,R

but fixing �L,R=� and other parameters are those used in Fig. 8.
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leakage effect. Thus, �−E is a competitive control parameter
in the coherence control of charge qubit, as we will see later.

In order to show clearly when non-Markovian or Markov-
ian processes play a major role in charge qubit decoherence,
we take �11 as an example to examine at what time this
dissipation-fluctuation coefficient reaches its steady value by
varying dL,R and �L,R. The result is plotted in Fig. 10. The
lines signify transition times between the time-dependent
fluctuating and the steady dissipation-fluctuation coefficients
by varying tunneling rate at a given spectral width. Non-
Markovian dynamics can be seen mostly in the time range
under the lines. It shows that the strong non-Markovian dy-
namics corresponds to a relatively small spectral widths dL,R
�a strong memory effect� and a relatively large tunneling
rates �L,R �a large leakage effect� compared with the interdot
tunnel coupling �. Non-Markovian dynamics disappears for
a large dL,R ��2�� and a small �L,R ��� /2�. In the param-
eter range of interest to the experiments,1 the non-Markovian
processes do not go over more than five Rabi cycles, with
which a significant effect can be seen in maintaining charge
coherence, as we will see below.

B. Decoherence dynamics of charge qubit

Having examined the time dependencies of all the trans-
port coefficients �the shifted energy-level splitting ���t�, the
renormalized interdot tunnel coupling ���t�, and the
dissipation-fluctuation coefficients ��t� ,���t�� in the master
equation for both biased and unbiased double dots, we shall
discuss now the decoherent dynamics of the charge qubit in
this section. Experimentally the coherence manipulation of
charge qubit is performed for the double dot on-resonance,
�=E1−E2=0. The corresponding shifted energy-level split-
ting ���t� remains zero. Then the energy eigenbasis of the
charge qubit refers actually to the molecular antibonding and
bonding states, namely, 	� 
� 1

�2
�	1
� 	2
�. The oscillation

between the coherently coupled localized charge states 	1

and 	2
 as coherent superpositions of the molecular states

describes the charge coherence, where the renormalized Rabi
frequency ��t�=���t� is just the shifted interdot tunnel cou-
pling for the symmetric double dot. The time-dependent
dissipation-fluctuation coefficients ��t� ,���t� will disturb
this coherent oscillation and cause charge qubit decoherence.

To be specific, we let the initial state be �11=1 and exam-
ine the time evolution of the density matrix under various
conditions. First we calculate rate equation �45� for the no-
Coulomb-interacting double dot. The typical population evo-
lution shown in Fig. 11 tells that the double occupancy is
favored. In fact, the charge qubit of a double dot is designed
in the strong interdot Coulomb blockade regime where the
state of simultaneous occupation of two dots is excluded. In
other words, unlike the charge qubit initialization where both
the interaction-free and the strong interaction rate equations
give qualitatively the same result, for the coherence control
of the charge qubit, interaction-free rate equation �45� is in-
valid. The charge qubit dynamics must be described by
strong-interaction rate equation �52�. For rate equation �52�
in the strong interdot Coulomb repulsion regime to be held
for charge qubit manipulation, the energy difference between
the Fermi surfaces of the reservoirs and the energy levels of
the dots, �−E, cannot be too large. The interdot Coulomb
repulsion in the samples is estimated to be 200 �eV.4 The
value of �−E that can be taken most safely should be not
larger than 50 �eV, a quarter of the interdot Coulomb repul-
sion energy. If �−E is taken over 100 �eV, it is comparable
to the Coulomb repulsion energy so that the doubly occupied
state cannot be completely excluded. For convenience and
consistency with the discussion in Sec. IV A, we still take
the quantum dot parameters E1=E2=E and �=10 �eV. As
one will see with �−E=25�50 �eV, with �L,R and dL,R
being in a reasonable range, the charge qubit can maintain
coherence very well.
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FIG. 10. �Color online� The lines for separating the Markovian
and the non-Markovian dynamics in the �11− t plot; each line cor-
responds to a given value of dL,R. The parameters �−E=�
=10 �eV are used.
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FIG. 11. �Color online� The time evolutions of the populations
�11 �the red solid line�, �22 �the blue long-dashed line�, �00 �the
black short-dashed line�, and �33 �the green dashed-dotted line� cal-
culated using interaction-free rate equation �45� in the symmetric
double dot with �=10 �eV, �−E=30 �eV, dL,R=� /2, and �L,R

=dL,R. Without considering the interdot Coulomb repulsion, raising
up of the chemical potentials ��E accumulates charges into the
double dot.
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In Fig. 12, we plot the time evolution of the reduced den-
sity matrix by varying the aligned Fermi surfaces. The result
shows that the coherent oscillation of the charge qubit de-
pends sensitively on the height of aligned Fermi surfaces
from the resonant levels of the double dot, i.e., �−E. When
�−E is not too large ���� and �L,R is not too small ����,
the population �11 decays very quickly. This is because al-
though the state of simultaneous occupation of two dots is
excluded, there is still chance for electrons to escape from
the dots into the reservoirs such that both dots become
empty, namely, �00�0 �see Fig. 12�b�� as a leakage effect.
This effect can be suppressed when the Fermi surfaces are
aligned such that �−E must be relatively larger than �L,R. As
a result, the charge qubit can maintain the coherence very
well. In Fig. 12�a�, we see that the charge coherence is per-
fectly maintained for �−E=50 �eV. Meanwhile, the real
and the imaginary parts of the off-diagonal density-matrix
element �12 exhibit quite different dynamics. The imaginary
part of �12 has a similar oscillatory feature as �11 �see Fig.
12�d��, which depicts the coherent tunnel coupling between
two dots. While the real part of �12 goes down to be negative
�see Fig. 12�c�� which is related to the loss of the energy
�dissipation�. We find that to maintain a good coherent dy-
namics for charge qubit, the Fermi surfaces of the reservoirs
is better to be aligned above the energy levels of the double
dot not less than 2�.

In Fig. 13 we plot the time evolution of the reduced den-
sity matrix at a few different tunneling rates but fixing other

parameters. Experimentally, the tunneling rates between the
dots and the reservoirs are also tunable. We fixed the spectral
widths at dL,R=25 �eV for which the memory effect is
largely suppressed. Meantime, we take �−E=50 �eV
�much larger than �L,R� such that the leakage effect is also
largely suppressed. When the tunneling rates are small
��� /2�, the time dependence of these transport coefficients
in the master equation are negligible �as shown in Fig. 8� so
that no non-Markovian dynamics can be observed. The cor-
responding charge dynamics is given by the red solid lines in
Fig. 13 where the oscillation frequency is time independent,
consistent with the result in Markov approximation. When
the tunneling rates become large ����, the charge frequency
is largely shifted and varies in time. The larger the tunneling
rates are, the faster the electron oscillates between two dots
and the reservoirs, thus the stronger the non-Markovian dy-
namics occurs. Here the decay of the coherent charge oscil-
lation �see the blue long-dashed and black short-dashed lines
in Fig. 13� is not due to the charge leakage �which has been
mainly suppressed by raising up the Fermi surfaces� but to a
backreaction decoherence effect of the reservoirs when the
tunneling rate becomes larger. Increasing the tunneling rates
leads to more charge leakage. However, comparing the mag-
nitude of �00 with that of �11 shows that the damping of
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FIG. 12. �Color online� The time evolutions of the density ma-
trix at different �−E with E fixed. The red solid line is for �−E
=0, the blue long-dashed line is for �−E=10 �eV, and the black
short-dashed line is for �−E=50 �eV. dL,R=� /2 and �L,R=�.
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FIG. 13. �Color online� The time evolutions of the density ma-
trix at different coupling constants. The red solid line is for �L,R

=2.5 �eV, the blue long-dashed line is for �L,R=10 �eV, and the
black short-dashed line is for �L,R=25 �eV. The chemical poten-
tials are kept at �−E=50 �eV and dL,R=25 �eV.
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coherent charge oscillation in the presence of a large tunnel-
ing rate is not primarily due to charge leakage but a non-
Markovian backreaction decoherence effect.

The more non-Markovian dynamics can be seen by vary-
ing the spectral widths dL,R. When the spectral width is com-
parable to the interdot coupling �, namely, the characteristic
time of reservoirs is comparable to the characteristic time of
the double dot, the non-Markovian dynamics becomes the
most significant in the time evolution of charge coherence.
Although it is currently not clear how to tune the spectral
widths in experiments, it is still interesting to see what roles
the spectral widths �or more generally speaking, a noncon-
stant spectral density� play in the charge decoherence dy-
namics. We plot in Fig. 14 the time evolutions of the density-
matrix elements at various spectral widths with �−E
=50 �eV and �L,R=�. As we can see if dL,R is small
��� /2�, the coherent charge dynamics is well preserved al-
though it is a strong non-Markovian process. With increasing
the spectral widths, the decoherent charge dynamics becomes
visible and also becomes Markov type. Widening the spectral
widths damps the coherent charge oscillation. Wider spectral
width also causes more charge leakage. But comparing the
magnitudes of �00 with �11 in Fig. 14 shows again that the
damping of coherent charge oscillation in the presence of a

wide spectral width is a Markovian decoherence effect. The
frequencies of coherent charge oscillation are also shifted
differently from the bare Rabi frequency for different spec-
tral widths presented �see Figs. 14�a�–14�d��.

From the above analysis, we find that the charge qubit
coherence can be maintained very well when either the spec-
tral widths dL,R or the tunneling rates �L,R are sufficiently
smaller than �−E. However, when both the spectral widths
dL,R and the tunneling rates �L,R become comparable to �
−E, the decay of charge coherency can be seen within a few
cycles of the bare Rabi oscillation. The difference between
the non-Markovian and the Markovian process manifests in
the difference between the renormalized Rabi frequency
��t�=���t� �for the symmetric double dot� and the bare Rabi
frequency �0=�. In Fig. 15, we plot the average renormal-
ized Rabi frequency ��
=��t� by varying the spectral
widths dL,R and the tunneling rate �L,R, respectively, and
make a comparison with the bare Rabi frequency �the black
short-dashed lines�. It shows that the renormalized Rabi fre-
quency has a large shift from the bare one, except for the
region �the Markov regime� with the spectral width dL,R
�2� and the tunneling rate �L,R�� /2, where the renormal-
ized Rabi frequency is close to the bare one. In Fig. 16, we
plot the time evolution of density matrix �11 using strong-
interaction rate equation �52� for a few different sets of
��L,R ,dL,R� and make a comparison with the Markovian ap-
proximation determined by rate equation �53�, where the
charge coherence dynamics in the double dot from Markov-
ian to the non-Markovian processes is clearly demonstrated.

C. Relaxation time T1 and dephasing time T2

To understand quantitatively the decoherence dynamics of
charge qubit in the double dot, we shall now extract the
decay rates �the relaxation time T1 and the dephasing time
T2� for various manipulation conditions. The relaxation time
T1 characterizes the time going from the antibonding state
�with higher energy� to the bonding state �with lower energy�
in the energy eigenbasis 	� 
= 1

�2
�	1
� 	2
� �for symmetric

double dot�. It is described by the decay of the diagonal
element of the density matrix in the energy eigenbasis,
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FIG. 14. �Color online� The time evolutions of the density ma-
trix at different spectral widths. The red solid line is for dL,R

=1 �eV, the blue long-dashed line is for dL,R=5 �eV, and the
black short-dashed line is for dL,R=25 �eV. �−E is kept at
50 �eV and �L,R=�.

FIG. 15. �Color online� The average renormalized Rabi fre-
quency ��
=��t� by varying the spectral widths dL,R and the tun-
neling rate �L,R, respectively, and comparing with the bare Rabi
frequency �the black short-dashed lines�. Here we take �−E
=50 �eV to suppress the charge leakage.
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�+	�	+ 
= 1
2 ��11+�22�+Re��12�. In the ideal case �such as in

NMR�, �11+�22=1 so that T1 is completely determined by
the real part of �12. For the charge qubit in double dots, in
general �11+�22�1 because of charge leakage. But in the
practical manipulation, the Fermi surfaces of the reservoirs
are set high enough from the resonant energy levels of the
double dot such that charge leakage can be suppressed. Thus
we can still extract T1 from Re �12. The decoherence
�dephasing� time T2 corresponds to the decay of the off-
diagonal element of the reduced density matrix
�+	�	−
= 1

2 ��11−�22�− i Im��12�. As we will see later the time
dependencies of �11,�22 and the imaginary part of �12 behave
very similarly. This may tell us that T2 can be extracted from
either �11,�22 or Im �12. Experimentally, one extracted T2
from �22 by measuring the current proportion to �22.

4

Having made the above analysis, we shall extract the de-
cay rates of the charge coherent oscillations from the time
evolution of the reduced density-matrix elements Re �12�t�

and Im �12�t� or �11�t� by fitting a decay oscillating function
plus an offset to the numerical data. An intuitive fitting
function for the charge oscillation decay would be
Ae−Bt cos���
t�+C. However this fitting function fails for
�11�t�. The typical damping oscillation of �11�t� shows that it
converges to a steady value of �11�

1
2 at large t. Thus �11�t�

can be well described by the fitting function

�11�t� = fh�t�cos2���
t/2� + f l�t�sin2���
t/2� , �57�

where fh,l�t�=Ah,l exp�−Bh,lt
s�+Ch,l are used to fit the down-

ward shift of the peaks and the upward shift of the valleys in
the damped oscillation, respectively. The oscillating function
is the squares of sine and cosine functions with half the os-
cillation frequency, sin2���
t /2� and cos2���
t /2�, rather
than cos���
t� and sin���
t�. This can be easily understood
by considering an ideal qubit. Its Rabi oscillation condi-
tioned to the initial state �11�0�=1 is given by

��t� =�cos2��t

2
� −

i

2
sin��t�

i

2
sin��t� sin2��t

2
� �

in the localized charge state basis. Similarly, the off-diagonal
density-matrix elements can be described by the fitting func-
tions,

Im �12�t� = �Ai exp�− Bit
s� + Ci�sin���
t� , �58a�

Re �12�t� = Ar exp�− Brt
s� + Cr. �58b�

The fitting parameters Ax ,Bx ,Cx for x=h , l , i ,r are generally
different for different fitting function and data. Figure 17 is a
plot of using the fitting function of Eq. �57� to fit the exact
numerical solution of �11�t�. The results show that with the
decay function fh�t�=0.48 exp�−0.58t�+0.50 and f l�t�=
−0.47 exp�−0.54t�+0.49, fitting function �57� gives very
much the same solution as that obtained numerically from
Eq. �52� for �11�t�.

In order to have a better fitting to various tunable param-
eters, we plot in Fig. 18 the fitting errors for �11�t� by aver-
aging the deviations between fh�t� and the peaks of the os-
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FIG. 16. �Color online� The time evolutions of �11 obtained
from rate equation �52� and the corresponding Markovian limit �Eq.
�53�� for the strong-Coulomb-interacting double dot. �a� The stron-
gest non-Markovian regime for a small spectral width and a large
tunneling rate. �b� The non-Markovian dynamics controlled by a
large tunneling rate alone. �c� The non-Markovian dynamics con-
trolled by a small spectral width alone. �d� The Markov regime
corresponding to a small tunneling rate and large spectral width.
Here we take �−E=30 �eV.
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FIG. 17. �Color online� �a� Using the fitting function
fh�t�cos2���
t /2�+ f l�t�sin2���
t /2� �the red solid line� to fit the
exact numerical solution of �11�t� �the green dashed-dotted line�.
Here we use the parameters �−E=50 �eV, �L,R=25 �eV, and
dL,R=25 �eV.
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cillating �11�t� in a large range of the chemical potential, the
tunneling rate as well as the spectral width. The top two plots
in Fig. 18 are the fitting errors by varying �L,R but fixing
��L,R ,dL,R�= �25,5� �eV �the strong non-Markovian regime�
and �5,25� �eV �the Markovian limit regime�. We find that
in the strong non-Markovian regime, when the Fermi sur-
faces are not far away from the resonant levels of the double
dot ��−E�25 �eV�, the best fitting is a subexponential
decay with s�1. When �−E�25 �eV, the fitting function
becomes a simple exponential decay function �s=1�, while,
in the Markovian limit, the best fitting is just a simple expo-

nential decay for all the values of �−E. The middle two
plots in Fig. 18 are the fitting errors by varying �L,R but
fixing ��−E ,dL,R�= �10,5� �eV �the non-Markovian re-
gime� and �30,25� �eV �the Markovian limit�. Again we see
that in the non-Markovian regime, the best fitting is a sub-
exponential decay with s�1 for all the values of �L,R except
for some very small �L,R ��� /2� which indeed enters the
Markovian limit where the fitting function becomes a simple
exponential decay function. In the Markovian limit �the large
spectral width limit here�, the best fitting is given by a simple
exponential decay �s=1� again. The bottom two plots in Fig.
18 are the fitting errors by varying dL,R but fixed ��
−E ,�L,R�= �10,25� �eV �the non-Markovian regime� and
�30,5� �eV �the Markovian limit�. It tells that in the non-
Markovian regime, when dL,R�� �the strong non-
Markovian regime�, the best fitting is still given by a subex-
ponential decay �s�1�, while for dL,R�� the system transits
to the Markovian, the fitting function becomes again a
simple exponential decay function. In the Markovian limit
�small tunneling rate limit�, the best fitting is just given by a
simple exponential decay �s=1�, as one expected.

The above analysis shows that Markovian decoherence
processes lead to an exponential decay and a subexponential
decay seems to occur mainly in strong non-Markovian pro-
cesses. But this does not imply a simple exponential decay
being necessarily Markovian. In Fig. 19, we plot the average
fitting errors of fitting function �58� with the exact numerical
solution of the real and imaginary parts of the off-diagonal
density-matrix element �12�t� in the strong non-Markovian
regime with the spectral widths dL,R=5 �eV and the tunnel-
ing rates �L,R=25 �eV. The results show that for both
Im �12�t� and Re �12�t�, the best fitting is given by simple
exponential decay for the whole range of chemical potential
up to �−E=40 �eV. This forces us to carefully look at the
results in Fig. 18. We find that all the results with a subex-
ponential decay show up for small �−E values ��2�� where
the charge leakage effect cannot be effectively suppressed by
the chemical potentials of the reservoirs. This tells that the
subexponential decay in �11�t� is a charge leakage effect. The
slightly different decay behaviors for �11�t� and Im �12�t� ac-
tually come from the charge leakage effect contained in
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FIG. 18. �Color online� The average fitting errors by fitting the
exact numerical solutions of �11�t� with the fitting function given by
Eq. �57�. The top two plots are the fitting errors by varying �−E
but fixing ��L,R ,dL,R�= �25,5� �eV and �5,25� �eV, respectively.
The middle two plots for varying �L,R but fixing ��−E ,dL,R�
= �10,5� �eV and �30,25� �eV, and the bottom two plots are ob-
tained by varying dL,R but fixed ��−E ,�L,R�= �10,25� �eV and
�30,5� �eV. The parameters are chosen such that the left three
figures correspond to the non-Markovian regime while the right
three figures are the Markovian limit. s=1 /2 corresponds to the
subexponential fitting �red lines�, s=1 is the simple exponential
fitting �blue long-dashed lines�, and s=3 /2 is the superexponential
fitting �black dashed lines�.

10 20 30 40
���

0

0.002

0.004

0.006

0.008
For Re(����

10 20 30 40
���

0

0.004

0.008

0.012

0.016

Av
er
ag
e
Fi
tti
ng
Er
ro
r

For Im(����

s=1/2

s=3/2

s=1
s=1

s=3/2

s=1/2

FIG. 19. �Color online� The average fitting errors by fitting the
exact numerical solution of Im �12�t� and Re �12�t� with the fitting
functions given by Eq. �58�, where we vary �−E but fixing dL,R

=5 �eV and �L,R=25 �eV. The red lines correspond to the sub-
exponential fitting function �s=1 /2�, the blue long-dashed lines are
the simple exponential fitting function �s=1�, and the black dashed
lines are the superexponential fitting function �s=3 /2�.

MATISSE W. Y. TU AND WEI-MIN ZHANG PHYSICAL REVIEW B 78, 235311 �2008�

235311-20



�11�t� rather than a consequence of non-Markovian dynam-
ics, as we will see more later.

Now we shall extract the relaxation time T1 from
Re �12�t� and the decoherence time T2 from Im �12�t� or
�11�t� using the concept of half-life from the exact numerical
solutions and from fitting functions �58� and �57�. The results
are plotted in Figs. 20–22. In Fig. 20 we plot the relaxation
time T1 and the decoherence time T2 from Re �12�t� and
Im �12�t�, respectively, by varying the chemical potential �
−E, the tunneling rates �L,R, and the spectral widths dL,R.
Figures 20�a� and 20�b� are the plots of T1 and T2 by varying
�−E but fixing ��L,R ,dL,R�= �25,5� �eV �solid lines, corre-
sponding to the non-Markovian processes� and �5,25� �eV
�dashed lines for Markovian limit�. The results tell us that the
decoherence effect �for both T1 and T2� is large for the small

chemical potential �−E due to the large charge leakage ef-
fect. Increasing �−E reduces the charge leakage effect, thus
also reducing the decoherence effect. When �−E is larger
than �L,R and dL,R �goes up to 30 �eV in Figs. 20�a� and
20�b��, the decoherence effect quickly reaches a minimum
value �the longest decoherence time �2 ns�. Figures 20�c�
and 20�d� plot T1 and T2 by varying �L,R but fixing ��
−E ,dL,R�= �10,5� �solid lines, where both the charge leakage
and memory effects are supposed to play an important role�
and �30,25� �eV �dashed lines, where both the charge leak-
age and memory effects are ignorable�. It shows that for a
small tunneling rate between the reservoir and dot ���� the
decoherence effect is weak. Increasing �L,R enhances the
non-Markovian dynamics effect and also enhances the deco-
herence �shorting the relaxation and dephasing times�. Fig-
ures 20�e� and 20�f� plot T1 and T2 by varying dL,R but fixing
��−E ,�L,R�= �10,25� �solid lines, where the charge leakage
effect dominates� and �30,5� �eV �dashed lines, where the
charge leakage effect is negligible�. We find that when the
memory effect must be considered �corresponding to a small
spectral width�, the decoherence effect is small �or the relax-
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FIG. 20. The relaxation time T1 and the dephasing time T2 ex-
tracted from Re �12�t� and Im �12�t�, respectively, ��a� and �b�� by
varying the chemical potential �−E but fixing ��L,R ,dL,R�= �25,5�
�solid lines� and �5,25� �eV �dashed lines�, ��c� and �d�� by vary-
ing the tunneling rates �L,R at ��−E ,dL,R�= �10,5� �solid lines� and
�30,25� �eV �dashed lines�, and ��e� and �f�� by varying the spec-
tral widths dL,R but fixing ��−E ,�L,R�= �10,25� �solid lines� and
�30,5� �eV �dashed lines�.
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FIG. 21. The decoherence time T2 extracted from �11�t� and
Im �12�t�, respectively, with the same conditions used in Fig. 20,
namely, by varying the chemical potential �−E, the tunneling rates
�L,R, and the spectral widths dL,R.
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ation and dephasing times become longer�. Increasing dL,R
reduces the memory or non-Markovian dynamics effect and
enhances the decoherence �shorting the relaxation and
dephasing times�. It is interesting to see that in all the cases,
the relaxation time is close to the dephasing time, T1�T2 in
the Markovian limit �dashed lines�, while for the non-
Markovian regime, the relaxation time is no longer than
twice the dephasing time, T1�2T2 �solid lines�.

We have pointed out that the decay behaviors for �11 and
Im �12 are slightly different from the fitting function in the
non-Markovian regime. In Fig. 21, we compare the decoher-
ence time T2 extracted from �11�t� and Im �12�t�, respec-
tively, with the same conditions used in Fig. 20, namely, by
varying the chemical potential �−E, the tunneling rates �L,R,
and the spectral widths dL,R. As we see although quantita-
tively the dephasing times extracted from �11�t� and Im �12�t�
are in the same order, there are some obvious differences in
certain range of the tunable parameters where the charge
leakage effect plays an important role. This is indeed clearly
shown in the right-bottom two plots in Fig. 21 where �−E
=30 �eV. When �L,R are small ��� /2� so that the charge

leakage is negligible, the dephasing times T2 extracted from
�11�t� and Im �12�t� are very close to each other over there.
This again indicates that it is the charge leakage effect that
results in the slightly different decay law for �11�t� �follows a
subexponential decay� and Im �12�t� �by a simple exponen-
tial decay� in the non-Markovian regime.

In fact, the original definition of the decoherence for a
qubit is given by the decay of 	�+	�	−
	 though it is not easy
to be measured directly in experiments. Ultimately when the
charge qubit is completely decohered, �11��22 and Im��12�
�0 thus 	�+	�	−
	�0 at the asymptotic time. We have veri-
fied this property in our exact numerical calculation. Thus
the off-diagonal reduced density-matrix element in the en-
ergy eigenbasis, 	�+	��t�	−
	, can be well fitted by Ae−Bts +C,
with C=0. In Fig. 22 we compare the results of T2 extracted
from 	�+	�	−
	 and Im��12��t�. It is remarkable that the
dephasing times T2 obtained from 	�+	�	−
	 and Im��12��t�
are almost exactly the same in a wide range of parameters
concerned here ��−E is from 0 to 40 �eV and �L,R and dL,R
are from 1 to 30 �eV at �=10 �eV�. The decoherence
�dephasing� time T2 obtained here is between 0.2 and 2 ns,
except for the case shown in the left-bottom plot in Fig. 21
where the decoherence time even smaller.

Now we shall end this section with a brief summary in the
following. The non-Markovian coherence and decoherence
dynamics of charge qubit is dominated by two major effects,
the memory and leakage effects in the double dot gated by
electrode reservoirs. The former becomes a dominate effect
when the time scale of the reservoirs is comparable to the
time scale of the double dot. The latter becomes an important
effect when the electron tunneling strength between the res-
ervoirs and dots is tuned to be large. These two characters
are suitably described by the spectral widths and the tunnel-
ing rates embedded in Lorentzian spectral density �25� we
used. Strengthening the couplings between the reservoirs and
dots and widening the spectral widths of the reservoirs dis-
turb the charge coherence in the double dot significantly.
However, reasonably raising up the chemical potentials �L,R
can suppress charge leakage and maintain charge coherence.
The left uncontrollable decoherence factor is the spectral
width which characters how many electron states in the res-
ervoirs effectively involving in the tunneling processes be-
tween the dots and the reservoirs. The smaller the spectral
width is �the less the electron states involve in the electron
tunneling�, the better the charge coherence can be main-
tained. The decay of the charge coherent oscillation is well
described by a simple exponential decay for the off-diagonal
reduced density-matrix elements, but the diagonal ones
�populations� are better described by a subexponential law
when charge leakage is not negligible. Otherwise simple ex-
ponential decay is better for both the non-Markovian and
Markovian regimes. The relaxation time T1 and the dephas-
ing time T2 can be extracted from the exact numerical solu-
tion Re �12�t� and Im �12�t�, respectively, with the result T1
�2T2 for a broad parameter range we used.

V. FURTHER EXTENSION TO OTHER QUANTUM DOT
SYSTEMS

In this section, we shall briefly discuss the possible exten-
sion of the present work to other interesting physics in quan-

0 10 20 30
dL,R

0.4

0.5

0.6

0.7

0.8
�������eV, �L,R=5�eV

0 10 20 30
dL,R

0

4

8

12

16

20

T 2
-1
(G
H
z)

�������eV, �L,R=25�eV

0 10 20 30
�L,R

0
1
2
3
4
5
6
�������eV, dL,R=25�eV

0 10 20 30
�L,R

0

1

2

3

4

T 2
-1
(G
H
z)

�������eV, dL,R=5�eV

0 10 20 30 40
���

0
1
2
3
4
5
6
�L,R�	�eV, dL,R=25�eV

0 10 20 30 40
���

0

2

4

6

T 2
-1
(G
H
z) 
���


Im(���)

�L,R��	�eV, dL,R=5�eV

FIG. 22. �Color online� The decoherence time T2 extracted from
	�+,−�t�	= 	�+	�	−
	 and Im �12�t�, respectively, with the same condi-
tions used in Fig. 21, namely, by varying the chemical potential
�−E, the tunneling rates �L,R, and the spectral widths dL,R.
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tum dot systems. The non-Markovian master equation de-
rived in Sec. III can be extended to other quantum dot
systems. A prototypical example is a single quantum dot
coupled to two electrode leads with spin degrees of freedom
of electrons being explicitly taken into account. This system
has attracted a lot of interest for the study of Kondo effect,
Fano resonance, Coulomb blockade effects, etc.34–36 The
double dots with two electrons for the study of spin
entanglement5 or the double dots through vertical tunnel cou-
pling for the study of two charge qubit entanglement51 and
for the realization of a mesoscopic Aharonov-Bohm interfer-
ometer when an external magnetic field is pierced52–54 are
also of great interest. The extended Hamiltonian may gener-
ally be written as

H = �
i

Eiai
†ai + �

i�j

Tij�ai
†aj + aj

†ai� + �
ij

Uijninj

+ �
�p

��pa�p
† a�p + �

�ip

�ti�pai
†a�p + ti�p

� a�p
† ai� , �59�

where the index i denotes the electron state in the dot system
�including the spin degrees of freedom�. The Uij term repre-
sents the electron Coulomb repulsion interaction. The index
� counts the leads in the reservoir and p labels the electron
energy levels as well as electron spins in the reservoir. The
last term shows that each level in the dot system may couple
to all the external leads.

If the electron Coulomb repulsion term Uij is negligible,
the corresponding master equation of the reduced density
matrix for the above Hamiltonian still has the same form as
Eq. �2� with all the non-Markovian time-dependent coeffi-
cient in the master equation being determined by the same
relation �34� through the matrices u�t� ,v�t�. Moreover
u�t� ,v�t� still obey the same dissipation-fluctuation equation
of motion �30�. The only change is the kernel matrices in Eq.
�30�: Gij�
−
��=��Fij��
−
�� and Gij

��
−
��=��Fij�
� �


−
��, where the environmental time correlation functions are
now given by

Fij��
 − 
�� = �
p

ti�ptj�p
� e−i��p�
−
��, �60a�

Fij�
� �
 − 
�� = �

p

f����p�ti�ptj�p
� e−i��p�
−
��. �60b�

For the case of strong Coulomb repulsion �the Coulomb
blockade regime where Uij→��, the master equation can
describe the electron dynamics in the dots in terms of the
Bloch-type rate equations where the double-occupied elec-
tron states must be explicitly excluded, as we have discussed
in detail in Sec. III D.

When the Coulomb repulsion interaction is comparable to
the level energies of electrons in the dots or the external bias,
the situation becomes much more complicated. However,
studying the above two extreme limits, Uij→0 and Uij→�,
together within the same framework could reveal a signifi-
cant understanding to the quantum transport phenomena,
such as Kondo effect.34 The non-Markovian master equation
can also be directly applied to the dynamics of electron en-
tanglement in the doubledot,5 where we may approximately

take the interdot Coulomb repulsion Uij→0 �i� j� and the
on-site Coulomb repulsion Uii→�. For a finite Uij, existence
of a similar rigorous master equation is not obvious and
some approximations, such as mean-field approximation or
more systematically loop expansion,55 may be needed. We
shall leave these problems for further investigation.

VI. CONCLUSION AND DISCUSSION

In this paper, we have developed a nonperturbation theory
to describe decoherence dynamics of electron charges in the
double quantum dot gated by electrodes. We extended the
Feynman-Vernon influence functional theory to fermionic
environments and derived an exact master equation �33� for
the reduced density matrix of the double dot without includ-
ing the interdot Coulomb repulsion at beginning. The contri-
butions of quantum and thermal fluctuations induced by the
electron reservoirs are embedded into the time-dependent
transport coefficients �Eqs. �34� and �36�� in the master equa-
tion. These time-dependent transport coefficients are com-
pletely determined by the nonperturbation dissipation-
fluctuation equation of motion �30�. The exact master
equation is then further extended to the double dot in the
strong interdot Coulomb interacting regime in terms of
Bloch-type rate equation �52� where the strong Coulomb re-
pulsion simply leads one to exclude the states corresponding
to a simultaneous occupation of the two dots from Eq. �33�.
Our theory is developed for a general spectral density of the
reservoirs at arbitrary temperatures and bias. Other approxi-
mated master equations used for the double quantum dot can
be obtained at well-defined limits of the present theory. This
nonperturbation decoherence theory allows us to exploit the
quantum decoherence dynamics of the charge qubit brought
up by the tunneling processes between the reservoirs and
dots through qubit manipulations.

We then used the master equation �in terms of the rate
equations� to study the non-Markovian decoherence dynam-
ics of the double-dot charge qubit with the backreaction of
the reservoirs being fully taken into account. To make quali-
tative and also quantitative understandings of the charge qu-
bit decoherence, we numerically solve the dissipation-
fluctuation integrodifferential equations of motion using a
Lorentzian spectral density. We examine the time depen-
dence of all the transport coefficients from which the time
scales within which non-Markovian processes become im-
portant in the charge coherent dynamics are determined. The
correlation time of the electron reservoirs �in terms of the
spectral widths in the Lorentzian spectral densities� and the
electron tunneling strengths between the reservoirs and dots
�in terms of the tunneling rates in the Lorentzian spectral
densities� characterize the time scales for the occurrence of
non-Markovian processes. Non-Markovian processes domi-
nate the charge coherent dynamics when the spectral width is
comparable to the interdot tunnel coupling where the
memory effect plays an important role and/or when the tun-
neling rates between the reservoirs and dots become strong
such that charge leakage becomes a main effect for decoher-
ence. Raising up the Fermi surfaces of the reservoirs can
suppress charge leakage. The Markovian limit can be
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reached with a weak tunneling rate and a large spectral
width, where perturbation theory becomes valid and the
spectral density is reduced to a constant. The decay of the
charge coherent oscillation is well described by a simple ex-
ponential law, except for some special regime where the
charge leakage is not negligible such that the evolution of
state populations is better described by a subexponential de-
cay. We also extracted the relaxation time T1 and the deco-
herence time T2 consistently from different elements of the
reduced density matrix and obtained a general result T1
�2T2 which is on the order of nanoseconds or less in a
broad parameter range we considered. These results are
ready to be examined in experiments.1

Although we concentrate in this paper on the electron
charge coherence �decoherence� dynamics in the double
quantum dot system, the theory we developed in this work
can also be applied to investigate other physical properties,
such as quantum transport phenomena and electron entangle-
ment dynamics, in various quantum dot structures. In fact,
the spectral density describing the spectral distribution of
electron reservoirs and electron tunneling processes between
the reservoirs and dots has not been well determined experi-
mentally. We used a Lorentzian spectral density that has been
used by others yet is still waiting for justification in experi-
ments. The tunneling rates �L,R in the Lorentzian spectral
density are indeed tunable in experiment and have been ex-
tracted from current spectra by assuming a constant spectral
density. With the capability of monitoring the time evolution
of electronic population transfer, we can look closely at the
short-time transport properties in this double-dot device from

which we may extract the tunneling rates and the spectral
widths for the Lorentzian spectral density or other possible
forms of the spectral density. Otherwise it may be other sur-
roundings �phonons and fluctuation in impurity configura-
tions, etc.� that play an important role in the dynamics of
charge qubit decoherence. These together with other trans-
port properties in various nanostructures, such as Kondo ef-
fect and Fano resonance, as well as electron charge and spin
entanglement dynamics in the double dot, deserve a separate
study. We will leave these problems to be addressed in sepa-
rate papers. In short, the theory we developed in this work
can be used to study not only the problem of decoherence but
also other interesting physics, such as the phenomena of
quantum transport as well as the dynamics of electron en-
tanglement in various quantum dot systems.
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APPENDIX A: DERIVATION OF THE INFLUENCE
FUNCTIONAL

The propagating function governing the time evolution of
the reduced density matrix is given by Eq. �22�, in which the
generalized Feynman-Vernon influence functional is defined
by

F���,�,��,�� = d��fN�d��f0�d��g0��f0	�E�t0�	g0
 D�f�, f ,g�,g�ei�SE�f�,f�−SE
� �g�,g�+SI��

�,�,f�,f�−SI
����,�,g�,g��, �A1�

where �E is the initial density operator of the fermion reser-
voirs, f0 ,g0 , fN and their complex conjugates are the Grass-
mann numbers introduced in the fermion coherent-state rep-
resentation, SE is the action of the electron reservoirs, and SI

stands for the action of the interaction between the dots and
the reservoirs. Explicitly,

iSE�f�, f� = �
l=1,2;k

� f lk
� �t�f lk�t� + f lk

� �t0�f lk�t0�
2

+ 
t0

t

d
�� ḟ lk
� f lk − f lk

� ḟ lk

2
� − i�lkf lk

� f lk��
= i�

lk

SE,lk�f lk
� , f lk� , �A2a�

SI���,�, f�, f� = − �
lk


t0

t

d
�tilk�i
�f lk + tilk

� f lk
� �i�

= �
lk

SI,lk��i
�,�i, f lk

� , f lk� . �A2b�

Let the electron reservoirs be initially in a thermal equi-
librium state, then

�f0	�E�t0�	g0
 = �
lk

�fk0	
1

Z
e−���lk−�l�alk

† alk	gk0
 �A3�

where �L,R are the chemical potentials of the source and
drain electron reservoirs connected to dots 1 and 2, respec-
tively, and Z is the fermion partition function of the reser-
voirs Z=�lk�e−���lk−�l�+1�. Obviously, the influence func-
tional can be written as F��� ,� ,�� ,��=�lkFlk��� ,� ,�� ,��.
Furthermore, since the Hamiltonians are quadratic, the path
integrals in the influence functional can be exactly calculated
using either the Gaussian integrals or the stationary path
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method. Here we present the calculation based on the sta-
tionary path method. The forward stationary paths of the
electrons in the reservoirs are determined by

ḟ lk�
� + i�lkf lk�
� = − itilk
� �i�
� , �A4a�

ḟ lk
� �
� − i�lkf lk

� �
� = itilk�i
��
� , �A4b�

with i=1,2 for l=L ,R, respectively. The solutions to station-
ary path equation �A4� are

f lk�
� = f lk�t0�e−i�lk�
−t0� − itilk
� 

t0




d
�e−i�lk�
−
���i�
�� ,

f lk
� �
� = f lk

� �t�ei�lk�
−t� − itilk



t

d
�ei�lk�
−
���i
��
�� . �A5�

With the similar solutions for the backward stationary paths,
the lk component of the influence functional is then given by

Flk���,�,��,�� = exp�− 	tilk	2
t0

t

d


	�
t0




d
��ei�lk�
−
���i
��
���i�
�

+ e−i�lk�
−
���i
��
��i�
���

+ 
t0

t

d
�e−i�lk�
−
����i
��
��i�
��

− f��lk���i
��
� + �i

��
����i�
�� + �i�
������ ,

�A6�

where f��lk� is the Fermi distribution function, f��lk�
= 1

e���lk−�l�+1
. Summing up contributions from all fermion

modes in the electron reservoirs, we get influence functional
�23� with the dissipation-fluctuation kernels given by Eq.
�24�.

APPENDIX B: DERIVATION OF THE EXACT
PROPAGATING FUNCTION

In this appendix we show how to use the solutions of the
equations of motion �Eq. �28�� to determine the time-
dependent coefficients in the master equation. The equation
of motion for �1,2

� is just the complex conjugate equation of
�1,2, while that of �1,2

� is the complex conjugate to the equa-
tion of �1,2. Meantime both �1,2

� �
� and �1,2�
� are fixed at

= t and both �1,2

� �
� and �1,2�
� are fixed at 
= t0. We only
need to solve the set of equations of motion for �1,2�
� and
�1,2�
�. The solutions to the equations of motion for �1,2

� �
�
and �1,2

� �
� can be obtained by conjugating the solutions of
�1,2�
� and �1,2�
� with corresponding replacement of the
boundary conditions.

Letting ��
����
�+��
�, equation of motion �28� be-
comes

�̇�
� + i�E1 Tc

Tc E2
���
�

+ 
t0




d
��F1L�
 − 
�� 0

0 F2R�
 − 
��
���
��

= 
t0

t

d
��F1L
� �
 − 
�� 0

0 F2R
� �
 − 
��

���
�� , �B1a�

�̇�
� + i�E1 Tc

Tc E2
���
�

− 



t

d
��F1L�
 − 
�� 0

0 F2R�
 − 
��
���
�� = 0,

�B1b�

where we have used the following notations for brevity:

��
� = ��1�
�
�2�
�

�, ��
� = ��1�
�
�2�
�

� . �B2�

To solve the above equations of motion, we introduce the
variables ū�
�, u�
�, and v�
� such that

��
� = ū�
���t� , �B3a�

��
� = u�
���t0� + v�
���t� . �B3b�

Equation �B1� can then be expressed in terms of the vari-
ables ū�
�, u�
�, and v�
� as

u̇̄�
� + i�E1 Tc

Tc E2
�ū�
�

− 



t

d
��F1�
 − 
�� 0

0 F2�
 − 
��
�ū�
�� = 0,

�B4a�

u̇�
� + i�E1 Tc

Tc E2
�u�
�

+ 
t0




d
��F1L�
 − 
�� 0

0 F2R�
 − 
��
�u�
�� = 0,

�B4b�

v̇�
� + i�E1 Tc

Tc E2
�v�
�

+ 
t0




d
��F1L�
 − 
�� 0

0 F2R�
 − 
��
�v�
��

= 
t0

t �F1L
� �
 − 
�� 0

0 F2R
� �
 − 
��

�ū�
�� , �B4c�

with the boundary conditions ūij�t�=�ij, uij�t0�=�ij, and
vij�t0�=0, respectively. Obviously, Eq. �B4a� is the backward
version of Eq. �B4b�. Therefore, ū�
�=u†�t+ t0−
� for t0
�
� t.
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Now �1,2�t�, �1,2
� �t0�, �1,2�t0�, and �1,2

� �t� can be factorized
from the boundary conditions, ��t0�=�0 and ��t�=� f. Explic-
itly, letting 
= t0 for Eq. �B3a� and 
= t for Eq. �B3b�, we
have

�0 + ��t0� = ū�t0����t� + � f� , �B5a�

��t� = u�t��0 + v�t����t� + � f� . �B5b�

Note that ū�t0�=u†�t�, the above algebraic equation gives so-
lution �29�. Similarly, letting ���
�= ��1

��
� �2
��
�� and ���
�

= ��1
��
� �2

��
��, we have

���t0� = � f
��I + v†�t��I − v†�t��−1�u�t�

− �0
��I − u†�t��I − v†�t��−1u�t�� , �B6a�

���t� = ��0
�u†�t� + � f

�v†�t���I − v†�t��−1. �B6b�

Substituting relations �29� and �B6� into propagating func-
tion �27� and using the fact that v�
� is Hermitian at 
= t, we
obtain exact propagating function �31� for the double dot
gated by bias electrodes.
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